scholarly journals 1820P Taxane-related skin toxicity: Analysis of an in vivo and 3D in vitro model study of the impact of paclitaxel on skin

2020 ◽  
Vol 31 ◽  
pp. S1050
Author(s):  
M. Perez-Leal ◽  
J.A. Perez Fidalgo ◽  
C. Sanz ◽  
J. Poveda ◽  
J. Milara ◽  
...  
1996 ◽  
Vol 33 (2) ◽  
pp. 150-156 ◽  
Author(s):  
James P. Bradley ◽  
Jamie P. Levine ◽  
Christopher Blewett ◽  
Thomas Krummel ◽  
Joseph G. Mccarthy ◽  
...  

The biology underlying craniosynostosis remains unknown. Previous studies have shown that the underlying dura mater, not the suture itself, signals a suture to fuse. The purpose of this study was to develop an in vitro model for cranial-suture fusion that would still allow for suture-dura interaction, but without the influence of tensional forces transmitted from the cranial base. This was accomplished by demonstrating that the posterior frontal mouse cranial suture, known to be the only cranial suture that fuses in vivo, fuses when plated with its dura in an organ-culture system. In such an organ-culture system, the sutures are free from both the influence of dural forces transmitted from the cranial base and from hormonal influences only available in a perfused system. For the cranial-suture fusion in vitro model study, the sagittal sutures (controls that remain patent in vivo) and posterior frontal sutures (that fuse in vivo) with the underlying dura were excised from 24-day-old euthanized mice, cut into 5 × 4 × 2-mm specimens, and cultured in a chemically defined, serum-free media. One hundred sutures were harvested at the day of sacrifice, then every 2 days thereafter until 30 days in culture, stained with H & E, and analyzed. A subsequent cranial-suture without dura in vitro study was performed in a similar fashion to the first study, but only the calvariae with the posterior frontal or sagittal sutures (without the underlying dura) were cultured. Results from the cranial-suture fusion in vitro model study showed that all sagittal sutures placed in organ culture with the underlying dura remained patent. More importantly, the posterior frontal sutures with the underlying dura, which were plated-down as patent at 24 days of age, demonstrated fusion after various growth periods in organ culture. In vitro posterior frontal mouse-suture fusion occurred in an anterior-to-posterior direction but in a delayed fashion, 4 to 7 days later than in vivo posterior frontal mouse-suture fusion. In contrast, the subsequent cranial-suture without dura in vitro study showed patency of all sutures, including the posterior frontal suture. These data from in vitro experiments indicate that: (1) mouse calvariae, sutures, and the underlying dura survive and grow in organ-culture systems for 30 days; (2) the local dura, free from external influences transmitted from the cranial base and hormones from distant sites, influences the cells of its overlying suture to cause fusion; and (3) without dura influence, all in vitro cranial sutures remained patent. By first identifying the factors involved in dural-suture signaling and then regulating these factors and their receptors, the biologic basis of suture fusion and craniosynostosis may be unraveled and used in the future to manipulate pathologic (premature) suture fusion.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 230
Author(s):  
Cassandra Pouget ◽  
Claude-Alexandre Gustave ◽  
Christelle Ngba-Essebe ◽  
Frédéric Laurent ◽  
Emmanuel Lemichez ◽  
...  

Staphylococcus aureus is the most prevalent pathogen isolated from diabetic foot infections (DFIs). The purpose of this study was to evaluate its behavior in an in vitro model mimicking the conditions encountered in DFI. Four clinical S. aureus strains were cultivated for 16 weeks in a specific environment based on the wound-like medium biofilm model. The adaptation of isolates was evaluated as follows: by Caenorhabditis elegans model (to evaluate virulence); by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) (to evaluate expression of the main virulence genes); and by Biofilm Ring test® (to assess the biofilm formation). After 16 weeks, the four S. aureus had adapted their metabolism, with the development of small colony variants and the loss of b-hemolysin expression. The in vivo nematode model suggested a decrease of virulence, confirmed by qRT-PCRs, showing a significant decrease of expression of the main staphylococcal virulence genes tested, notably the toxin-encoding genes. An increased expression of genes involved in adhesion and biofilm was noted. Our data based on an in vitro model confirm the impact of environment on the adaptation switch of S. aureus to prolonged stress environmental conditions. These results contribute to explore and characterize the virulence of S. aureus in chronic wounds.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e71740 ◽  
Author(s):  
Jianying Zhang ◽  
James H-C. Wang

2019 ◽  
Vol 9 (8) ◽  
pp. 1616 ◽  
Author(s):  
Ilaria De Santis ◽  
Ervin Tasnadi ◽  
Peter Horvath ◽  
Alessandro Bevilacqua ◽  
Filippo Piccinini

The volume is one of the most relevant features that define the treatment of an in vivo tumour. When using cancer 3D in vitro models in pre-clinical studies, it becomes important to evaluate the macroscopic effects of drugs and radiotherapy treatments. Depending on the nature of the 3D in vitro model used, different open-source solutions can be used for measuring the volume by starting from microscope-acquired images. In this work, we introduced several open-source tools today available for estimating the volume of 3D multicellular aggregates (e.g., spheroids, organoids), also giving hints for defining the “best software” by analysing characteristics of 3D in vitro models and limits of the tools. Finally, using several cancer organoids imaged by a fluorescent microscope, we compared volume estimations obtained with different tools, besides presenting a new version of the Reconstruction and Visualization from Multiple Sections (ReViMS version 2.0) tool. This work aims to be the reference for researchers interested in estimating the volume of 3D multicellular aggregates through an open-source tool.


Biomaterials ◽  
2016 ◽  
Vol 77 ◽  
pp. 164-172 ◽  
Author(s):  
Eliza L.S. Fong ◽  
Xinhai Wan ◽  
Jun Yang ◽  
Micaela Morgado ◽  
Antonios G. Mikos ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232081 ◽  
Author(s):  
Anna Urciuolo ◽  
Elena Serena ◽  
Rusha Ghua ◽  
Susi Zatti ◽  
Monica Giomo ◽  
...  

Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


Sign in / Sign up

Export Citation Format

Share Document