multicellular aggregates
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 31)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 833
Author(s):  
Sonia Capellero ◽  
Jessica Erriquez ◽  
Chiara Battistini ◽  
Roberta Porporato ◽  
Giulia Scotto ◽  
...  

Peritoneal metastases are the leading cause of morbidity and mortality in ovarian cancer. Cancer cells float in peritoneal fluid, named ascites, together with a definitely higher number of non neo-neoplastic cells, as single cells or multicellular aggregates. The aim of this work is to uncover the features that make these aggregates the metastasizing units. Immunofluorescence revealed that aggregates are made almost exclusively of ovarian cancer cells expressing the specific nuclear PAX8 protein. The same cells expressed epithelial and mesenchymal markers, such as EPCAM and αSMA, respectively. Expression of fibronectin further supported a hybrid epithelia-mesenchymal phenotype, that is maintained when aggregates are cultivated and proliferate. Hematopoietic cells as well as macrophages are negligible in the aggregates, while abundant in the ascitic fluid confirming their prominent role in establishing an eco-system necessary for the survival of ovarian cancer cells. Using ovarian cancer cell lines, we show that cells forming 3D structures neo-expressed thoroughly fibronectin and αSMA. Functional assays showed that αSMA and fibronectin are necessary for the compaction and survival of 3D structures. Altogether these data show that metastasizing units display a hybrid phenotype that allows maintenance of the 3D structures and the plasticity necessary for implant and seeding into peritoneal lining.


Author(s):  
Adriano Bonforti ◽  
Ricard Sole

Multicellular life forms have evolved many times in our planet, suggesting that this is a common evolutionary innovation. Multiple advantages have been proposed for multicellularity (MC) to emerge. In this paper we address the problem of how the first precondition for multicellularity, namely "stay together" might have occurred under spatially limited resources exploited by a population of unicellular agents. Using a minimal model of evolved cell-cell adhesion among growing and dividing cells that exploit a localised resource with a given size, we show that a transition occurs at a critical resource size separating a phase of evolved multicellular aggregates from a phase where unicellularity (UC) is favoured. The two phases are separated by an intermediate domain where where both UC and MC can be selected by evolution. This model provides a minimal approach to the early stages that were required to transition from Darwinian individuality to cohesive groups of cells associated with a physical cooperative effect: when resources are present only in a localised portion of the habitat, MC is a desirable property as it helps cells to keep close to the available local nutrients.


2021 ◽  
Author(s):  
Irene Nagle ◽  
Florence Delort ◽  
Sylvie Henon ◽  
Claire Wilhelm ◽  
Sabrina Batonnet-Pichon ◽  
...  

Liquid and elastic behavior of tissues drives their morphology and their response to the environment. They appear as the first insight on tissue mechanics. We explore the role of individual cell properties on spheroids of mouse muscle precursor cells by developing a fully automated surface tension and Young's modulus measurement system. Flattening multicellular aggregates under magnetic constraint, we show that rigidity and surface tension act as highly sensitive macroscopic reporters closely related to microscopic local tension and effective adhesion. Shedding light on the major contributions of acto-myosin contractility, actin organization and intercellular adhesions, we reveal the role of desmin organization on the macroscopic mechanics of this tissue model.


2021 ◽  
Author(s):  
Jonathan Eugene Phillips ◽  
Maribel Santos ◽  
Mohammed Kanchwala ◽  
Chao Xing ◽  
Duojia Pan

Many genes that function in animal development are present in the close unicellular relatives of animals, but little is known regarding the premetazoan function of these genes. Here, we develop techniques for genetic manipulation in the filasterean Capsaspora owczarzaki and use these tools to characterize the Capsaspora ortholog of the Hippo signaling nuclear effector YAP/TAZ/Yorkie (coYki). In contrast to its potent oncogene activity in metazoans, we show that coYki is dispensable for cell proliferation but regulates cytoskeletal dynamics and the morphology of multicellular aggregates in Capsaspora. Our results suggest an ancestral role for the Hippo pathway in cytoskeletal regulation, which was later co-opted to regulate cell proliferation in animals.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hiroko Katsuno-Kambe ◽  
Jessica L Teo ◽  
Robert J Ju ◽  
James Hudson ◽  
Samantha J Stehbens ◽  
...  

Epithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here we focus on understanding cellular mechanisms for elongation, using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels. The elongating regions of aggregates displayed enhanced cell proliferation that was necessary for elongation to occur. Strikingly, this loco-regional increase in cell proliferation occurred where collagen 1 fibrils reorganized into bundles which were polarized with the elongating aggregates. Applying external stretch as a cell-independent way to reorganize the ECM, we found that collagen polarization stimulated regional cell proliferation to precipitate symmetry-breaking and elongation. This required b1-integrin and ERK signaling. We propose that collagen polarization supports epithelial anlagen elongation by stimulating loco-regional cell proliferation. This could provide a long-lasting structural memory of the initial axis that is generated when anlage break symmetry.


2021 ◽  
Vol 11 (6) ◽  
pp. 466
Author(s):  
Alisa Domnina ◽  
Larisa Alekseenko ◽  
Irina Kozhukharova ◽  
Olga Lyublinskaya ◽  
Mariia Shorokhova ◽  
...  

Endometrial mesenchymal stem/stromal cells (eMSCs) hold great promise in bioengineering and regenerative medicine due to their high expansion potential, unique immunosuppressive properties and multilineage differentiation capacity. Usually, eMSCs are maintained and applied as a monolayer culture. Recently, using animal models with endometrial and skin defects, we showed that formation of multicellular aggregates known as spheroids from eMSCs enhances their tissue repair capabilities. In this work, we refined a method of spheroid formation, which makes it possible to obtain well-formed aggregates with a narrow size distribution both at early eMSC passages and after prolonged cultivation. The use of serum-free media allows this method to be used for the production of spheroids for clinical purposes. Wound healing experiments on animals confirmed the high therapeutic potency of the produced eMSC spheroids in comparison to the monolayer eMSC culture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikola Dolezalova ◽  
Anja Gruszczyk ◽  
Kerry Barkan ◽  
John A. Gamble ◽  
Sam Galvin ◽  
...  

AbstractCryopreservation offers the potential to increase the availability of pancreatic islets for treatment of diabetic patients. However, current protocols, which use dimethyl sulfoxide (DMSO), lead to poor cryosurvival of islets. We demonstrate that equilibration of mouse islets with small molecules in aqueous solutions can be accelerated from > 24 to 6 h by increasing incubation temperature to 37 °C. We utilize this finding to demonstrate that current viability staining protocols are inaccurate and to develop a novel cryopreservation method combining DMSO with trehalose pre-incubation to achieve improved cryosurvival. This protocol resulted in improved ATP/ADP ratios and peptide secretion from β-cells, preserved cAMP response, and a gene expression profile consistent with improved cryoprotection. Our findings have potential to increase the availability of islets for transplantation and to inform the design of cryopreservation protocols for other multicellular aggregates, including organoids and bioengineered tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vajihe Azimian-Zavareh ◽  
Zeinab Dehghani-Ghobadi ◽  
Marzieh Ebrahimi ◽  
Kian Mirzazadeh ◽  
Irina Nazarenko ◽  
...  

AbstractWnt5A signals through various receptors that confer versatile biological functions. Here, we used Wnt5A overexpressing human ovarian SKOV-3 and OVCAR-3 stable clones for assessing integrin expression, cell proliferation, migration, invasion, and the ability of multicellular aggregates (MCAs) formation. We found here, that Wnt5A regulates differently the expression of its receptors in the stable Wnt5A overexpressing clones. The expression levels of Frizzled (FZD)-2 and -5, were increased in different clones. However ROR-1, -2 expression levels were differently regulated in clones. Wnt5A overexpressing clones showed increased cell proliferation, migration, and clonogenicity. Moreover, Wnt5A overexpressing SKOV-3 clone showed increased MCAs formation ability. Cell invasion had been increased in OVCAR-3-derived clones, while this was decreased in SKOV-3-derived clone. Importantly, αv integrin expression levels were increased in all assessed clones, accompanied by increased cell attachment to fibronectin and focal adhesion kinase activity. Moreover, the treatment of clones with Box5 as a Wnt5A/FZD5 antagonist abrogates ITGAV increase, cell proliferation, migration, and their attachment to fibronectin. Accordingly, we observed significantly higher expression levels of ITGAV and ITGB3 in human high-grade serous ovarian cancer specimens and ITGAV correlated positively with Wnt5A in metastatic serous type ovarian cancer. In summary, we hypothesize here, that Wnt5A/FZD-5 signaling modulate αv integrin expression levels that could be associated with ovarian cancer cell proliferation, migration, and fibronectin attachment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Monika E Dolega ◽  
Sylvain Monnier ◽  
Benjamin Brunel ◽  
Jean-François Joanny ◽  
Pierre Recho ◽  
...  

Imposed deformations play an important role in morphogenesis and tissue homeostasis, both in normal and pathological conditions. To perceive mechanical perturbations of different types and magnitudes, tissues need appropriate detectors, with a compliance that matches the perturbation amplitude. By comparing results of selective osmotic compressions of CT26 cells within multicellular aggregates and global aggregate compressions, we show that global compressions have a strong impact on the aggregates growth and internal cell motility, while selective compressions of same magnitude have almost no effect. Both compressions alter the volume of individual cells in the same way over a shor-timescale, but, by draining the water out of the extracellular matrix, the global one imposes a residual compressive mechanical stress on the cells over a long-timescale, while the selective one does not. We conclude that the extracellular matrix is as a sensor that mechanically regulates cell proliferation and migration in a 3D environment.


2021 ◽  
Author(s):  
Hiroko Katsuno-Kambe ◽  
Jessica L. Teo ◽  
Robert J. Ju ◽  
James E. Hudson ◽  
Samantha J. Stehbens ◽  
...  

AbstractBranched epithelial networks are fundamental features of many organs in the body. The biogenesis of these networks involves distinct processes where multicellular aggregates elongate and branch. In this report we focus on understanding how the extracellular matrix contributes to the process of elongation. Using mammary epithelial organotypic cultures we found that collagen 1, but not a basement membrane extract, induces the formation of elongated multicellular aggregates. Indeed, isotropic aggregates, used as models of epithelial anlage, broke symmetry and elongated when transplanted into collagen 1 gels; this was accompanied by reorganization of collagen fibrils into bundles that were polarized around the elongating aggregates. By applying external stretch as a cell-independent way to reorganize the ECM gels, we found that collagen polarization itself can induce and guide the direction of aggregate elongation. This critically involves cell proliferation, which is selectively enhanced in the regions of anlage that elongate, and requires β1-integrin and ERK signaling. We propose that collagen polarization promotes anlage elongation by providing a structural memory of the initial axis that is generated when aggregates break symmetry.


Sign in / Sign up

Export Citation Format

Share Document