Control system design and validation platform development for small pressurized water reactors (SPWR) by coupling an engineering simulator and MATLAB/Simulink

2017 ◽  
Vol 102 ◽  
pp. 309-316 ◽  
Author(s):  
Peiwei Sun ◽  
Huanhuan Zhao ◽  
Longtao Liao ◽  
Jianmin Zhang ◽  
Guanghui Su
Author(s):  
Zhe Dong ◽  
Yifei Pan ◽  
Miao Liu ◽  
Xiaojin Huang

The nuclear heating reactor (NHR) is a typical integral pressurized water reactor (iPWR) developed by the institute of nuclear and new energy technology (INET) of Tsinghua University, which has the safety advanced features such as the primary circuit integral arrangement, full-range natural circulation, self-pressurization. Power-level control is crucial for the operational stability and efficiency of the NHR, and the dynamic modeling is a basis for control system design and verification. From the conservation laws of mass, energy and momentum, a lumped-parameter dynamical model is proposed for the nuclear steam supply system (NSSS) based on the 200MWth nuclear heating reactor II (NHR200-II). The steady-state model validation is given by the comparing the parameter values of this model and that for plant design. Then, both the open-loop responses under the disturbances of reactivity and coolant flowrates as well as the closed-loop responses under the case of power ramp are given, where the rationality of the responses are analyzed from the viewpoint of plant physics and thermal-hydraulics. This model can be utilized for not only the control system design but also the development of a real-time simulator for the hardware-in-loop control system verification.


Author(s):  
Peiwei Sun ◽  
Chong Wang

Small Pressurized Water Reactors (SPWR) are different from those of the commercial large Pressurized Water Reactors (PWRs). There are no hot legs and cold legs between the reactor core and the steam generators like in the PWR. The coolant inventory is in a large amount. The inertia of the coolant is large and it takes a long time for the primary system to respond to disturbances. Once-through steam generator is adopted and its water inventory is small. It is very sensitive to disturbances. These unique characteristics challenge the control system design of an SPWR. Relap5 is used to model an SPWR. In the reactor power control system, both the reactor power and the coolant average temperature are regulated by the control rod reactivity. In the feedwater flow control system, the coordination between the reactor and the turbine is considered and coolant average temperature is adopted as one measurable disturbance to balance them. The coolant pressure is adjusted based on the heaters and spray in the pressurizer. The water level in the pressurizer is controlled by the charging flow. Transient simulations are carried out to evaluate the control system performance. When the reactor is perturbed, the reactor can be stabilized under the control system.


2015 ◽  
Vol 789-790 ◽  
pp. 693-699
Author(s):  
Alaa Khalifa ◽  
Ahmed Ramadan

This paper concerns with the control system design for a teleoperated endoscopic surgical manipulator system that uses PHANTOM Omni haptic device as the master and a 4-DOF parallel manipulator (2-PUU_2-PUS) as the slave. PID control algorithm was used to achieve the trajectory tracking, but the error in each actuated joint reached 0.6 mm which is not satisfactory in surgical application. The design of a control algorithm for achieving high trajectory tracking is needed. Simulation on the virtual prototype of the 4-DOF parallel manipulator has been achieved by combining MATLAB/Simulink with ADAMS. Fuzzy logic controller is designed and tested using the interface between ADAMS and MATLAB/Simulink. Signal constraint block adjusted the controller parameters for each actuated prismatic joint to eliminate the overshoot in most of position responses. The simulation results illustrate that the fuzzy logic control algorithm can achieve high trajectory tracking. Also, they show that the fuzzy controller has reduced the error by approximately 50 percent.


Sign in / Sign up

Export Citation Format

Share Document