scholarly journals Tricritical point and solid/liquid/gas phase transition of higher dimensional AdS black hole in massive gravity

2020 ◽  
Vol 412 ◽  
pp. 168023 ◽  
Author(s):  
Bo Liu ◽  
Zhan-Ying Yang ◽  
Rui-Hong Yue
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


2014 ◽  
Vol 31 (4) ◽  
pp. 042001 ◽  
Author(s):  
Natacha Altamirano ◽  
David Kubizňák ◽  
Robert B Mann ◽  
Zeinab Sherkatghanad

2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


2020 ◽  
Vol 135 (2) ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar

2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950231 ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar

The phase structure of charged anti-de Sitter black hole in massive gravity is investigated using the unstable circular photon orbits formalism, concretely we establish a direct link between the null geodesics and the critical behavior thermodynamic of such black hole solution. Our analysis reveals that the radius and the impact parameter corresponding to the unstable circular orbits can be used to probe the thermodynamic phase structure. We also show that the latter are key quantities to characterize the order of Van der Waals-like phase transition. Namely, we found a critical exponent around [Formula: see text]. All these results support further that the photon trajectories can be used as a useful and crucial tool to probe the thermodynamic black holes criticality.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Meng-Sen Ma ◽  
Li-Chun Zhang ◽  
Hui-Hua Zhao ◽  
Ren Zhao

We study the phase transition of charged Gauss-Bonnet-de Sitter (GB-dS) black hole. For black holes in de Sitter spacetime, there is not only black hole horizon, but also cosmological horizon. The thermodynamic quantities on both horizons satisfy the first law of the black hole thermodynamics, respectively; moreover, there are additional connections between them. Using the effective temperature approach, we obtained the effective thermodynamic quantities of charged GB-dS black hole. According to Ehrenfest classification, we calculate some response functions and plot their figures, from which one can see that the spacetime undergoes a second-order phase transition at the critical point. It is shown that the critical values of effective temperature and pressure decrease with the increase of the value of GB parameterα.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950063
Author(s):  
Parthapratim Pradhan

We study the extended phase-space thermodynamics of black holes in massive gravity. Particularly, we examine the critical behavior of this black hole using the extended phase-space formalism. Extended phase-space can be defined as one in which the cosmological constant should be treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. In this phase-space, we derive the black hole equation of state, the critical pressure, the critical volume and the critical temperature at the critical point. We also derive the critical ratio of this black hole. Moreover, we derive the black hole reduced equation of state in terms of the reduced pressure, the reduced volume and the reduced temperature. Furthermore, we examine the Ehrenfest equations of black holes in massive gravity in the extended phase-space at the critical point. We show that the Ehrenfest equations are satisfied on this black hole and the black hole encounters a second-order phase transition at the critical point in the said phase-space. This is re-examined by evaluating the Pregogine–Defay ratio [Formula: see text]. We determine the value of this ratio is [Formula: see text]. The outcome of this study is completely analogous to the nature of liquid–gas phase transition at the critical point. This investigation also further gives us the profound understanding between the black hole of massive gravity with the liquid–gas system.


1999 ◽  
Vol 28 (2) ◽  
pp. 197-208 ◽  
Author(s):  
K. Kokot ◽  
Z. Knez ◽  
D. Bauman

Sign in / Sign up

Export Citation Format

Share Document