Effect of slip on entropy generation in a single rotating disk in MHD flow

2008 ◽  
Vol 85 (12) ◽  
pp. 1225-1236 ◽  
Author(s):  
Aytac Arikoglu ◽  
Ibrahim Ozkol ◽  
Guven Komurgoz
2017 ◽  
Vol 11 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Shahnila Aziz ◽  
Saif Ullah

Abstract An investigation is performed for an alyzing the effect of entropy generation on the steady, laminar, axisymmetric flow of an incompressible Powell-Eyring fluid. The flow is considered in the presence of vertically applied magnetic field between radially stretching rotating disks. The Energy and concentration equation is taking into account to investigate the heat dissipation, Soret, Dufour and Joule heating effects. To describe the considered flow non-dimensionalized equations, an exact similarity function is used to reduce a set of the partial differential equation into a system of non-linear coupled ordinary differential equation with the associated boundary conditions. Using homotopy analysis method (HAM), an analytic solution for velocity, temperature and concentration profiles are obtained over the entire range of the imperative parameters. The velocity components, concentration and temperature field are used to determine the entropy generation. Plots illustrate important results on the effect of physical flow parameters. Results obtained by means of HAM are then compared with the results obtained by using optimized homotopy analysis method (OHAM). They are in very good agreement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarek N. Abdelhameed

AbstractThis article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving constant heating from the initial plate. The fluid disturbance away from the plate is negligible, therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is considered in terms of differential equations with physical conditions and then the corresponding equations for entropy generation and Bejan number are developed. The problem is solved for exact solutions using the Laplace transform and finite difference methods. Results are displayed in graphs and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a strong influence on water flow, entropy generation, and Bejan number.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
A. Arikoglu ◽  
G. Komurgoz ◽  
I. Ozkol ◽  
A. Y. Gunes

The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow, and entropy generation. As the physical model, the axially symmetrical steady flow of a Newtonian ambient fluid over a single rotating disk is chosen. The related nonlinear governing equations for flow and thermal fields are reduced to ordinary differential equations by applying so-called classical approach, which was first introduced by von Karman. Instead of a numerical method, a recently developed popular semi numerical-analytical technique; differential transform method is employed to solve the reduced governing equations under the assumptions of velocity and thermal jump conditions on the disk surface. The combined effects of the velocity slip and temperature jump on the thermal and flow fields are investigated in great detail for different values of the nondimensional field parameters. In order to evaluate the efficiency of such rotating fluidic system, the entropy generation equation is derived and nondimensionalized. Additionally, special attention has been given to entropy generation, its characteristic and dependency on various parameters, i.e., group parameter, Kn and Re numbers, etc. It is observed that thermal and velocity jump strongly reduce the magnitude of entropy generation throughout the flow domain. As a result, the efficiency of the related physical system increases. A noticeable objective of this study is to give an open form solution of nonlinear field equations. The reduced recurative form of the governing equations presented gives the reader an opportunity to see the solution in open series form.


2019 ◽  
Vol 26 ◽  
pp. 62-83
Author(s):  
Tunde Abdulkadir Yusuf ◽  
Jacob Abiodun Gbadeyan

In this study the effect of entropy generation on two dimensional magnetohydrodynamic (MHD) flow of a Maxwell fluid over an inclined stretching sheet embedded in a non-Darcian porous medium with velocity slip and convective boundary condition is investigated. Darcy-Forchheimer based model was employed to describe the flow in the porous medium. The non-linear thermal radiation is also taken into account. Similarity transformation is used to convert the non-linear partial differential equations to a system of non-linear ordinary differential equations. The resulting transformed equations are then solved using the Homotopy analysis method (HAM). Influence of various physical parameters on the dimensionless velocity profile, temperature profile and entropy generation are shown graphically and discussed in detail while the effects of these physical parameters on velocity gradient and temperature gradient are aided with the help of Table. Furthermore, comparison of some limiting cases of this model was made with existing results. The results obtained are found to be in good agreement with previously published results. Moreover, increase in local inertial coefficient parameter is found to decrease the entropy generation rate.


Sign in / Sign up

Export Citation Format

Share Document