Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials

2019 ◽  
Vol 242 ◽  
pp. 1661-1682 ◽  
Author(s):  
Christoph Waibel ◽  
Ralph Evins ◽  
Jan Carmeliet
Author(s):  
M. Khoroshev ◽  
F. Depisch ◽  
S. Subbotin

The IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) can be considered as the IAEA’s response to the challenges of growing energy demand. INPRO’s activities are intended to help to achieve one of the main objectives of the IAEA — to promote the development and peaceful use of nuclear energy. INPRO applies a carefully developed Methodology to assess Innovative Nuclear Energy Systems (INS) and to define R&D needs and deployment strategies for the development of large-scale regional and global INS. The purpose is to match the opportunities and challenges of sustainable energy supply provided by nuclear energy (NE) to the global balance of demands and resources.


Author(s):  
Guohua Shi ◽  
Songling Wang ◽  
Youyin Jing ◽  
Yuefen Gao

With the rapid economic development, the energy demand is rising and energy-related greenhouses gas emissions are growing rapidly in China. The usage percent of renewable energy in use is still low while the energy consumption is still increasing. Due to the expanding pressure from energy demand, environment concerns and society issues, distributed energy systems (DESs), especially combined heat and power (CHP), are encouraged and expected to play a greater role by the government. This paper mainly seeks to explore and answer some of questions. Firstly, the different technologies of various DES options are briefly reviewed. Then the question of why distributed energy systems should be developed in China is considered. Recent trends and current patterns of energy supply and use in China are also discussed. Some typical distributed energy systems used in China are introduced. This article also discusses what barriers need be overcome if China wishes to move towards a sustainable energy future. Finally, several suggestions are proposed to favor the wide application of DES in China. It is concluded that DES is a good option with respect to China’s sustainable development that has institutional, market and regulatory support.


2018 ◽  
Vol 31 (1) ◽  
pp. 77-87
Author(s):  
Alberto Fichera ◽  
Mattia Frasca ◽  
Rosaria Volpe

According to the Fifth Assessment Report of the International Panel on Climate Change, cities account for the 67% of the global energy demand and are the major contributors in emitting CO2 in the atmosphere. To face this problem, National and European policies pushes towards the insertion of distributed energy systems within urban areas as a valid alternative to the traditional centralized energy supply. In this direction, the installation of distributed energy systems gives raise to consumers with production capabilities, by now called ‘prosumers’. They use the autonomously produced energy to satisfy their own energy requirements and distribute the eventual exceed to neighbours. Yet, the energy exchanges occurring among prosumers permit the modelling of a network where nodes are identified as the prosumers and the energy interactions as links. This paper deals with this issue and proposes a cost-based methodology to model the energy distribution network of prosumers within the urban territories by deepening their impact on the traditional supply. Results are discussed by comparing a theoretical energy distribution network to a real case study.


2021 ◽  
Vol 3 ◽  
Author(s):  
Giovanni Barone ◽  
Annamaria Buonomano ◽  
Cesare Forzano ◽  
Giovanni Francesco Giuzio ◽  
Adolfo Palombo

The Canary Islands have great potential for the implementation of sustainable energy systems due to its availability of natural resources. The archipelago is not connected to the mainland electricity grid and the current generation system is mainly based on traditional fossil fuel. Therefore, the islands strongly dependent on fuel importations, with high costs due to logistics. Furthermore, due to the inadequate coverage of residential heating and cooling needs, the per capita energy consumption is far below the Spanish national average. This occurrence has inspired an intense debate on the current development model of the Canary Archipelago, which has led to the implementation of actions and measures aimed at achieving greater energy sustainability in the archipelago. Furthermore, at a local scale, an important investment plan has been carried out by the Spanish grid operator to ensure energy supply, to improve the system security and reliability, and to optimize the integration of renewable energies. Future measures and investments will be crucial to ensure a sustainable growth, both from the economic and the environment point of views. In this framework, this paper aims to discuss and compare the energy solutions, based on renewable energy technologies, identified to boost the sustainable transition of the islands. To this aim, multiple configurations of a wind power plant coupled with reversible hydro power/storage system for the distributed and on-site energy production in the island of Gran Canaria were modeled, simulated, and optimized by a TRNSYS/Matlab algorithm suitably developed. Specifically, along with the proposed system layouts, different scenarios related to diverse annual costs growth rate of fuel were investigated. The proposed analysis covers a time horizon of 20 years, up to 2040, and aims at assessing the impact of the investigated solution on energy demand, energy supply, and population incomes. Depending on the considered fuel cost growth rate, the best system configurations allow a primary energy saving in the range of 58.1–68.1%. Based on the system choice, the enterprise will generate significant revenues to the island population. The net present values are estimated in the range 1.50 × 103 ÷ 1.84 × 103 and 0.85 × 103 ÷ 1.27 × 103 M€, respectively for the two considered scenarios (annual costs growth rate of fuel 2 and −2%). The analysis demonstrates the importance of investments targeted at the implementation of renewables. The proposed scenarios indicate that the current energy model has the potential to radical change and to tackle climate change and energy issues while producing substantial economic savings and better life conditions for the population in the next years.


2021 ◽  
Vol 11 (8) ◽  
pp. 3587
Author(s):  
Javier Carroquino ◽  
Cristina Escriche-Martínez ◽  
Luis Valiño ◽  
Rodolfo Dufo-López

Standalone renewable energy systems usually incorporate batteries to get a steady energy supply. Currently, Li-ion batteries are gradually displacing lead-acid ones. In practice, the choice is made without previous comparison of its profitability in each case. This work compares the economic performance of both types of battery, in five real case studies with different demand profiles. For each case, two sets of simulations are carried out. In one of the sets, the energy demand is supplied by a standalone photovoltaic system and, in the other one, by a standalone hybrid photovoltaic-diesel system. Through optimization processes, the economic optimum solutions are obtained. In addition, sensitivity analyses on various parameters have been carried out, seeking the influence in favor of one or another type of battery. The results show that if the type of battery is changed, to achieve the economic optimum the entire system must be resized. In some cases, the economic optimum is reached with Li-ion and in others with lead-acid batteries, depending on the demand profiles. Thus, both types of batteries can be profitable options in standalone energy systems, with a greater tendency to lead-acid in fully photovoltaic systems and to Li-ion in hybrids. The price reductions that would make Li-ion the only choice is quantified.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2020 ◽  
Vol 37 (3) ◽  
pp. 36-45
Author(s):  
F.F. Khabirov ◽  
V.S. Vokhmin ◽  

The article considers the possibility of introducing digital and intelligent systems in the electric power industry, including the analysis of the consequences after the introduction of new technologies on the economic, social and technological side. Currently, the concept of distributed generation is being used more and more often in the global energy arena. This is certainly a trend in the energy sector. The current level of technological development in the energy sector is quite high, but in order to continue to increase competitiveness, we need a further transition to digital and intelligent energy systems that will increase the reliability, quality, environmental friendliness and automation of energy supply.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2879
Author(s):  
Xinxin Liu ◽  
Nan Li ◽  
Feng Liu ◽  
Hailin Mu ◽  
Longxi Li ◽  
...  

Optimal design of regional integrated energy systems (RIES) offers great potential for better managing energy sources, lower costs and reducing environmental impact. To capture the transition process from fossil fuel to renewable energy, a flexible RIES, including the traditional energy system (TES) based on the coal and biomass based distributed energy system (BDES), was designed to meet a regional multiple energy demand. In this paper, we analyze multiple scenarios based on a new rural community in Dalian (China) to capture the relationship among the energy supply cost, increased share of biomass, system configuration transformation, and renewable subsidy according to regional CO2 emission abatement control targets. A mixed integer linear programming (MILP) model was developed to find the optimal solutions. The results indicated that a 40.58% increase in the share of biomass in the RIES was the most cost-effective way as compared to the separate TES and BDES. Based on the RIES with minimal cost, by setting a CO2 emission reduction control within 40%, the RIES could ensure a competitive total annual cost as compared to the TES. In addition, when the reduction control exceeds 40%, a subsidy of 53.83 to 261.26 RMB/t of biomass would be needed to cover the extra cost to further increase the share of biomass resource and decrease the CO2 emission.


2018 ◽  
Vol 192 ◽  
pp. 790-800 ◽  
Author(s):  
Heiko Dunkelberg ◽  
Johannes Wagner ◽  
Conrad Hannen ◽  
B. Alexander Schlüter ◽  
Long Phan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document