Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study

2019 ◽  
Vol 250 ◽  
pp. 1457-1467 ◽  
Author(s):  
Xiaohu Yang ◽  
Pan Wei ◽  
Xin Cui ◽  
Liwen Jin ◽  
Ya-Ling He
Author(s):  
Junfei Guo ◽  
Zhan Liu ◽  
Zhao Du ◽  
Jiabang Yu ◽  
Xiaohu Yang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4379
Author(s):  
Max Hesselbrandt ◽  
Mikael Erlström ◽  
Daniel Sopher ◽  
Jose Acuna

Assessing the optimal placement and design of a large-scale high temperature energy storage system in crystalline bedrock is a challenging task. This study applies and evaluates various methods and strategies for pre-site investigation for a potential high temperature borehole thermal energy storage (HT-BTES) system at Linköping in Sweden. The storage is required to shift approximately 70 GWh of excess heat generated from a waste incineration plant during the summer to the winter season. Ideally, the site for the HT-BTES system should be able to accommodate up to 1400 wells to 300 m depth. The presence of major fracture zones, high groundwater flow, anisotropic thermal properties, and thick Quaternary overburden are all factors that play an important role in the performance of an HT-BTES system. Inadequate input data to the modeling and design increases the risk of unsatisfactory performance, unwanted thermal impact on the surroundings, and suboptimal placement of the HT-BTES system, especially in a complex crystalline bedrock setting. Hence, it is crucial that the subsurface geological conditions and associated thermal properties are suitably characterized as part of pre-investigation work. In this study, we utilize a range of methods for pre-site investigation in the greater Distorp area, in the vicinity of Linköping. Ground geophysical methods, including magnetic and Very Low-Frequency (VLF) measurements, are collected across the study area together with outcrop observations and lab analysis on rock samples. Borehole investigations are conducted, including Thermal Response Test (TRT) and Distributed Thermal Response Test (DTRT) measurements, as well as geophysical wireline logging. Drone-based photogrammetry is also applied to characterize the fracture distribution and orientation in outcrops. In the case of the Distorp site, these methods have proven to give useful information to optimize the placement of the HT-BTES system and to inform design and modeling work. Furthermore, many of the methods applied in the study have proven to require only a fraction of the resources required to drill a single well, and hence, can be considered relatively efficient.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1235
Author(s):  
Mohammad Ghalambaz ◽  
Seyed Abdollah Mansouri Mehryan ◽  
Ahmad Hajjar ◽  
Obai Younis ◽  
Mikhail A. Sheremet ◽  
...  

Thermal energy storage is a technique that has the potential to contribute to future energy grids to reduce fluctuations in supply from renewable energy sources. The principle of energy storage is to drive an endothermic phase change when excess energy is available and to allow the phase change to reverse and release heat when energy demand exceeds supply. Unwanted charge leakage and low heat transfer rates can limit the effectiveness of the units, but both of these problems can be mitigated by incorporating a metal foam into the design of the storage unit. This study demonstrates the benefits of adding copper foam into a thermal energy storage unit based on capric acid enhanced by copper nanoparticles. The volume fraction of nanoparticles and the location and porosity of the foam were optimized using the Taguchi approach to minimize the charge leakage expected from simulations. Placing the foam layer at the bottom of the unit with the maximum possible height and minimum porosity led to the lowest charge time. The optimum concentration of nanoparticles was found to be 4 vol.%, while the maximu possible concentration was 6 vol.%. The use of an optimized design of the enclosure and the optimum fraction of nanoparticles led to a predicted charging time for the unit that was approximately 58% shorter than that of the worst design. A sensitivity analysis shows that the height of the foam layer and its porosity are the dominant variables, and the location of the porous layer and volume fraction of nanoparticles are of secondary importance. Therefore, a well-designed location and size of a metal foam layer could be used to improve the charging speed of thermal energy storage units significantly. In such designs, the porosity and the placement-location of the foam should be considered more strongly than other factors.


Sign in / Sign up

Export Citation Format

Share Document