Numerical study on ignition amelioration of a hydrogen-enriched Wankel engine under lean-burn condition

2019 ◽  
Vol 255 ◽  
pp. 113800 ◽  
Author(s):  
Cheng Shi ◽  
Changwei Ji ◽  
Yunshan Ge ◽  
Shuofeng Wang ◽  
Jianhui Bao ◽  
...  
Author(s):  
A. Manivannan ◽  
R. Ramprabhu ◽  
P. Tamilporai ◽  
S. Chandrasekaran

This paper deals with Numerical Study of 4-stoke, Single cylinder, Spark Ignition, Extended Expansion Lean Burn Engine. Engine processes are simulated using thermodynamic and global modeling techniques. In the simulation study following process are considered compression, combustion, and expansion. Sub-models are used to include effect due to gas exchange process, heat transfer and friction. Wiebe heat release formula was used to predict the cylinder pressure, which was used to find out the indicated work done. The heat transfer from the cylinder, friction and pumping losses also were taken into account to predict the brake mean effective pressure, brake thermal efficiency and brake specific fuel consumption. Extended Expansion Engine operates on Otto-Atkinson cycle. Late Intake Valve Closure (LIVC) technique is used to control the load. The Atkinson cycle has lager expansion ratio than compression ratio. This is achieved by increasing the geometric compression ratio and employing LIVC. Simulation result shows that there is an increase in thermal efficiency up to a certain limit of intake valve closure timing. Optimum performance is attained at 90 deg intake valve closure (IVC) timing further delaying the intake valve closure reduces the engine performance.


2012 ◽  
Vol 505 ◽  
pp. 175-179 ◽  
Author(s):  
R. Vikas ◽  
J.M. Mallikarjuna ◽  
V. Ganesan

Nowadays, due to the stringent engine emission norms, an efficient technique is required to reduce oxides of nitrogen (NOX) from automobiles especially from the lean burn engines. Although Urea Selective Catalytic Reduction (SCR) is capable of satisfying these norms, the ammonia slip nullifies its advantages. Ammonia slip is mainly due to the lack of uniformity of ammonia at the monolith entrance. The uniformity of ammonia distribution mainly depends upon the flow parameters of exhaust gas and the injection parameters of urea water solution. The current study addresses the effect of flow parameters, temperature and flow rate of exhaust gas on the injection pressure. The results obtained reveals useful guidelines for enhancing the uniformity of ammonia in Urea-SCR.


Author(s):  
Gerald J. Micklow ◽  
Subir Roychoudhury ◽  
H. Lee Nguyen ◽  
Michael C. Cline

A rich burn/quick mix/lean burn (RQL) combustor concept for reducing pollutant emissions is currently under investigation at the NASA Lewis Research Center (LeRC). A numerical study was performed to investigate the chemically reactive flow with liquid spray injection for the RQL combustor. The RQL combustor consists of an airblast atomizer fuel injector, a rich burn section, a converging connecting pipe, a quick mix zone, a diverging connecting pipe and a lean combustion zone. For computational efficiency, the combustor was split into two sub systems, i.e. the fuel nozzle/rich burn section and the quick mix/lean burn section. The current study investigates the effect of varying the mass flow rate split between the swirler passages for an equivalence ratio of 2.0 on fuel distribution, temperature distribution, and emissions for the fuel nozzle/rich burn section of an RQL combustor. The input conditions used in the study were chosen based on tests completed at LeRC. It is seen that optimizing these parameters can substantially improve combustor performance and reduce combustor emissions. The optimal mass flow rate split for reducing NOx emissions based on the numerical study was the same as found by experiment at LeRC.


Fuel ◽  
1998 ◽  
Vol 77 (12) ◽  
pp. 1339-1347 ◽  
Author(s):  
Dehong Zhang ◽  
Steven H. Frankel

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1396
Author(s):  
Hao Guo ◽  
Song Zhou ◽  
Jiaxuan Zou ◽  
Majed Shreka

The global demand for clean fuels is increasing in order to meet the requirements of the International Maritime Organization (IMO) of 0.5% global Sulphur cap and Tier III emission limits. Natural gas has begun to be popularized on liquefied natural gas (LNG) ships because of its low cost and environment friendly. In large-bore marine engines, ignition with pilot fuel in the prechamber is a good way to reduce combustion variability and extend the lean-burn limit. However, the occurrence of knock limits the increase in power. Therefore, this paper investigates the effect of pilot fuel injection conditions on performance and knocking of a marine 2-stroke low-pressure dual-fuel (LP-DF) engine. The engine simulations were performed under different pilot fuel parameters. The results showed that the average in-cylinder temperature, the average in-cylinder pressure, and the NOx emissions gradually decreased with the delay of the pilot injection timing. Furthermore, the combustion situation gradually deteriorated as the pilot injection duration increased. A shorter pilot injection duration was beneficial to reduce NOx pollutant emissions. Moreover, the number of pilot injector orifices affected the ignition of pilot fuel and the flame propagation speed inside the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document