Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization

2020 ◽  
Vol 276 ◽  
pp. 115454
Author(s):  
Yu Tan ◽  
Hong Wang ◽  
Xun Zhu ◽  
Yi-Wen Lv ◽  
Yu-Dong Ding ◽  
...  
2019 ◽  
Vol 198 ◽  
pp. 111842
Author(s):  
Xin Zhang ◽  
Jianying Du ◽  
Yee Sin Ang ◽  
Jincan Chen ◽  
Lay Kee Ang

Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


Author(s):  
Akshay Khadse ◽  
Lauren Blanchette ◽  
Jayanta Kapat ◽  
Subith Vasu ◽  
Kareem Ahmed

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost and applicable to a broad range of heat source temperatures. The current study is focused on thermodynamic modelling and optimization of Recuperated (RC) and Recuperated Recompression (RRC) S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using a genetic algorithm. The Genetic Algorithm (GA) is mainly based on bio-inspired operators such as crossover, mutation and selection. This non-gradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio. It also outputs optimized mass flow rate of CO2 for the fixed mass flow rate and temperature of the exhaust gas. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. Further the optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for waste heat recovery.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6096
Author(s):  
Miguel Castro Oliveira ◽  
Muriel Iten ◽  
Pedro L. Cruz ◽  
Helena Monteiro

Thermal processes represent a considerable part of the total energy consumption in manufacturing industry, in sectors such as steel, aluminium, cement, ceramic and glass, among others. It can even be the predominant type of energy consumption in some sectors. High thermal energy processes are mostly associated to high thermal losses, (commonly denominated as waste heat), reinforcing the need for waste heat recovery (WHR) strategies. WHR has therefore been identified as a relevant solution to increase energy efficiency in industrial thermal applications, namely in energy intensive consumers. The ceramic sector is a clear example within the manufacturing industry mainly due to the fuel consumption required for the following processes: firing, drying and spray drying. This paper reviews studies on energy efficiency improvement measures including WHR practices applied to the ceramic sector. This focuses on technologies and strategies which have significant potential to promote energy savings and carbon emissions reduction. The measures have been grouped into three main categories: (i) equipment level; (ii) plant level; and (iii) outer plant level. Some examples include: (i) high efficiency burners; (ii) hot air recycling from kilns to other processes and installation of heat exchangers; and (iii) installation of gas turbine for combined heat and power (CHP). It is observed that energy efficiency solutions allow savings up to 50–60% in the case of high efficiency burners; 15% energy savings for hot air recycling solutions and 30% in the when gas turbines are considered for CHP. Limitations to the implementation of some measures have been identified such as the high investment costs associated, for instance, with certain heat exchangers as well as the corrosive nature of certain available exhaust heat.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1397
Author(s):  
Amin Mahmoudzadeh Andwari ◽  
Apostolos Pesyridis ◽  
Vahid Esfahanian ◽  
Ali Salavati-Zadeh ◽  
Alireza Hajialimohammadi

In the present study, the effects of Organic Rankine Cycle (ORC) and turbo-compound (T/C) system integration on a heavy-duty diesel engine (HDDE) is investigated. An inline six-cylinder turbocharged 11.5 liter compression ignition (CI) engine employing two waste heat recovery (WHR) strategies is modelled, simulated, and analyzed through a 1-D engine code called GT-Power. The WHR systems are evaluated by their ability to utilize the exhaust excess energy at the downstream of the primary turbocharger turbine, resulting in brake specific fuel consumption (BSFC) reduction. This excess energy is dependent on the mass flow rate and the temperature of engine exhaust gas. However, this energy varies with engine operational conditions, such as speed, load, etc. Therefore, the investigation is carried out at six engine major operating conditions consisting engine idling, minimum BFSC, part load, maximum torque, maximum power, and maximum exhaust flow rate. The results for the ORC and T/C systems indicated a 4.8% and 2.3% total average reduction in BSFC and also maximum thermal efficiencies of 8% and 10%, respectively. Unlike the ORC system, the T/C system was modelled as a secondary turbine arrangement, instead of an independent unit. This in turn deteriorated BSFC by 5.5%, mostly during low speed operation, due to the increased exhaust backpressure. It was further concluded that the T/C system performed superiorly to the ORC counterpart during top end engine speeds, however. The ORC presented a balanced and consistent operation across the engines speed and load range.


2014 ◽  
Vol 983 ◽  
pp. 383-387 ◽  
Author(s):  
Tian Shi Zhang ◽  
Qi Yi Wang ◽  
Guo Hua Wang ◽  
Chun Gao ◽  
Qing Gao

For the thermal environment and the warming requirement of Vehicle, carry out experiment study on heat storage characteristic of phase change materials (PCM) encapsulated by Spherical stack. heat storage and release experiment process , changing factors such as medium flow rate and melting point which impact on PCM heat transfer characteristics , melting rate and response time have been analyzed. The results show that within the scope of experiment high medium flow rate is conducive to promote PCM melting rate and heat storage. In the experiments process, high melting point of PCM storage heat grade is high, but the low melting point of PCM is more suitable for vehicle motor, batteries in low temperature waste heat recovery. At the same time, multi-melting point PCM storage device with spheres piled encapsulated delamination mixed stowage was better satisfy the different condition of waste heat recovery and utilization than single melting point of PCM.


Author(s):  
B. V. K. Reddy ◽  
Matthew Barry ◽  
John Li ◽  
Minking K. Chyu

This study investigates using numerical methods the performance of thermoelectric devices (TEDs) integrated with heat exchangers and applied to automotive exhaust gas waste-heat recovery. Air as an exhaust gas and water as a cooling fluid are used. The effects of temperature-dependent properties of materials (TE elements, ceramic plates, connectors, insulation materials and fluids) and interface electrical and thermal contact resistances on TED’s performance are included in the analysis. Additionally, the fluid heat exchangers and the insulation materials are modeled using a porous media approach. The response of hot and cold fluid inlet temperatures (Thi, Tci) and flow rates, number of modules N, permeability of heat exchangers and TE materials type on TED’s hydro-thermoelectric characteristics is studied. An increase in either Thi or a decrease in Tci is resulted in an enhancement in TED’s performance. The addition of modules is shown a significant effect on heat input Qh and power output P0 predictions; however, a minimal impact on efficiency η is displayed with N. For instance, at Thi = 873.15 K and Tci = 353.15 K with clathrate n-Ba8Ga16Ge30 and p-PbTe material’s combination, compared to single module case, TED with four modules showed 3.77- and 3.7-fold increase in P0 and Qh, respectively. In the studied 1–4 modules range, the cold fluid flow rate and the permeability of heat exchangers are exhibited a negligible effect on TED’s P0 and η, whereas the hot fluid flow rate is shown an appreciable change in η values. Further, when Thi is less than 500 K, TED with bismuth-tellurides showed a higher performance when compared to the clathrates and lead-tellurides materials combination.


Sign in / Sign up

Export Citation Format

Share Document