scholarly journals Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge

2020 ◽  
Vol 280 ◽  
pp. 115915
Author(s):  
Israel Díaz ◽  
Fernando Fdz-Polanco ◽  
Boldwin Mutsvene ◽  
María Fdz-Polanco
2020 ◽  
Vol 8 ◽  
Author(s):  
Teklit Gebregiorgis Ambaye ◽  
Eldon R. Rene ◽  
Capucine Dupont ◽  
Suchanya Wongrod ◽  
Eric D. van Hullebusch

2016 ◽  
Vol 23 (1) ◽  
pp. 99-115 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Kamil Witaszek ◽  
Hanna Waliszewska ◽  
Magdalena Zborowska ◽  
...  

Abstract The results of anaerobic digestion (AD) of buttermilk (BM) and cheese whey (CW) with a digested sewage sludge as inoculum is described. The substrate/inoculum mixtures were prepared using 10% buttermilk and 15% cheese whey. The essential parameters of the materials were described, including: total solids (TS), volatile solids (VS), pH, conductivity, C/N ratio (the quantitative ratio of organic carbon (C) to nitrogen (N)), alkalinity, chemical oxygen demand (COD). The potential directions of biodegradation of the organic waste types, as used in this study, are also presented. Appropriate chemical reactions illustrate the substrates and products in each phase of anaerobic decomposition of the compounds that are present in buttermilk and cheese whey: lactic acid, lactose, fat, and casein. Moreover, the biogas and biomethane production rates are compared for the substrates used in the experiment. The results have shown that buttermilk in AD generates more biogas (743 m3/Mg VS), including methane (527 m3/Mg VS), when compared with cheese whey (600 m3/Mg VS, 338 m3/Mg VS for biogas and methane, respectively).


2021 ◽  
Vol 13 (17) ◽  
pp. 9869
Author(s):  
Raffaele Morello ◽  
Francesco Di Capua ◽  
Ludovico Pontoni ◽  
Stefano Papirio ◽  
Danilo Spasiano ◽  
...  

The adoption of prolonged solid retention times during the biological treatment of urban wastewaters is a well-known strategy to reduce sewage sludge production. However, it also results in the production of a biological sludge with low percentages of biodegradable organic matter, also characterized by high humification degrees, which may hamper the anaerobic digestion treatment aimed at sludge stabilization. To accelerate the hydrolytic stage, the application of microaerobic conditions during the anaerobic digestion of low-biodegradable sewage sludge was investigated in this study. In particular, six bio-methanation tests of a real sewage sludge were carried out, introducing air in the bioreactors with doses ranging between 0 and 16.83 L air/kg VSin d, in order to evaluate the air dosage that optimizes the biomethane production and organic matter degradation. Notably, the lower air loading rates investigated in this study, such as 0.68 and 1.37 L air/kg VSin d, led to an increase in methane production of up to 19%, due to a higher degradation of total lipids and proteins. In addition, these microaerobic conditions also resulted in a decrease in the sludge humification degree and in lower volatile fatty acid accumulation.


Fuel ◽  
2019 ◽  
Vol 255 ◽  
pp. 115713 ◽  
Author(s):  
Cristina Agabo-García ◽  
Montserrat Pérez ◽  
Bruno Rodríguez-Morgado ◽  
Juan Parrado ◽  
Rosario Solera

2016 ◽  
Vol 51 (9) ◽  
pp. 1283-1289 ◽  
Author(s):  
Jessica L. Linville ◽  
Yanwen Shen ◽  
Robin P. Schoene ◽  
Maximilian Nguyen ◽  
Meltem Urgun-Demirtas ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6262 ◽  
Author(s):  
Roberta Ferrentino ◽  
Fabio Merzari ◽  
Luca Fiori ◽  
Gianni Andreottola

The present study addresses the coupling of hydrothermal carbonization (HTC) with anaerobic digestion (AD) in wastewater treatment plants. The improvement in biomethane production due to the recycling back to the anaerobic digester of HTC liquor and hydrochar generated from digested sludge is investigated and proved. Mixtures of different compositions of HTC liquor and hydrochar, as well as individual substrates, were tested. The biomethane yield reached 102 ± 3 mL CH4 g−1 COD when the HTC liquor was cycled back to the AD and treated together with primary and secondary sludge. Thus, the biomethane production was almost doubled compared to that of the AD of primary and secondary sludge (55 ± 20 mL CH4 g−1 COD). The benefit is even more significant when both the HTC liquor and the hydrochar were fed to the AD of primary and secondary sludge. The biomethane yield increased up to 187 ± 18 mL CH4 g−1 COD when 45% of hydrochar, with respect to the total feedstock, was added. These results highlight the improvement that the HTC process can bring to AD, enhancing biomethane production and promoting a sustainable solution for the treatment of the HTC liquor and possibly the hydrochar itself.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


Sign in / Sign up

Export Citation Format

Share Document