scholarly journals Sex-based differences in body core temperature response across repeat work bouts in the heat

2022 ◽  
Vol 98 ◽  
pp. 103586
Author(s):  
Christopher A.J. Anderson ◽  
Ian B. Stewart ◽  
Kelly L. Stewart ◽  
Denise M. Linnane ◽  
Mark J. Patterson ◽  
...  
1997 ◽  
Vol 82 (5) ◽  
pp. 1406-1410 ◽  
Author(s):  
James E. Fewell ◽  
Patricia A. Tang

Fewell, James E., and Patricia A. Tang. Pregnancy alters body-core temperature response to a simulated open field in rats. J. Appl. Physiol. 82(4): 1406–1410, 1997.—Exposure of a rat to a novel environment (e.g., a simulated open field) induces a transient increase in body-core temperature, which is often called stress-induced hyperthermia. Although pregnancy is known to influence thermoregulatory control, its effect on stress-induced hyperthermia is unknown. Therefore, 24 Sprague-Dawley rats (8 nonpregnant and 16 pregnant) were studied to test the hypothesis that pregnancy would alter the development of stress-induced hyperthermia after exposure to a simulated open field. Body-core temperature index increased significantly after exposure to a simulated open field in nonpregnant and gestation day-10 rats but not in gestation day-15 and day-20 rats. Thus our data provide evidence that pregnancy influences the body-core temperature response of rats exposed to a simulated open field in a gestation-dependent fashion. The functional consequences as well as the mechanisms involved remain to be determined.


2017 ◽  
Vol 14 (9) ◽  
pp. 703-711 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Robert D. Meade ◽  
Andrew W. D'Souza ◽  
Andreas D. Flouris ◽  
Stephen G. Hardcastle ◽  
...  

2008 ◽  
Vol 294 (2) ◽  
pp. F309-F315 ◽  
Author(s):  
Joo Lee Cham ◽  
Emilio Badoer

Redistribution of blood from the viscera to the peripheral vasculature is the major cardiovascular response designed to restore thermoregulatory homeostasis after an elevation in body core temperature. In this study, we investigated the role of the hypothalamic paraventricular nucleus (PVN) in the reflex decrease in renal blood flow that is induced by hyperthermia, as this brain region is known to play a key role in renal function and may contribute to the central pathways underlying thermoregulatory responses. In anesthetized rats, blood pressure, heart rate, renal blood flow, and tail skin temperature were recorded in response to elevating body core temperature. In the control group, saline was microinjected bilaterally into the PVN; in the second group, muscimol (1 nmol in 100 nl per side) was microinjected to inhibit neuronal activity in the PVN; and in a third group, muscimol was microinjected outside the PVN. Compared with control, microinjection of muscimol into the PVN did not significantly affect the blood pressure or heart rate responses. However, the normal reflex reduction in renal blood flow observed in response to hyperthermia in the control group (∼70% from a resting level of 11.5 ml/min) was abolished by the microinjection of muscimol into the PVN (maximum reduction of 8% from a resting of 9.1 ml/min). This effect was specific to the PVN since microinjection of muscimol outside the PVN did not prevent the normal renal blood flow response. The data suggest that the PVN plays an essential role in the reflex decrease in renal blood flow elicited by hyperthermia.


2002 ◽  
Vol 80 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Frédéric Canini ◽  
Nadine Simler ◽  
Lionel Bourdon

The effects of MK801 (dizocilpine), a glutamate NMDA receptor antagonist, on thermoregulation in the heat were studied in awake rats exposed to 40°C ambient temperature until their body core temperature reached 43°C. Under these conditions, MK801-treated rats exhibited enhanced locomotor activity and a steady rise in body core temperature, which reduced the heat exposure duration required to reach 43°C. Since MK801-treated rats also showed increased striatal dopaminergic metabolism at thermoneutrality, the role of dopamine in the MK801-induced impairment of thermoregulation in the heat was determined using co-treatment with SCH23390, a dopamine D1 receptor antagonist. SCH23390 normalized the locomotor activity in the heat without any effect on the heat exposure duration. These results suggest that the MK801-induced impairment of thermoregulation in the heat is related to neither a dopamine metabolism alteration nor a locomotor activity enhancement.Key words: heatstroke, NMDA receptor, thermoregulation, dopamine, locomotion.


2013 ◽  
Vol 84 (11) ◽  
pp. 1153-1158 ◽  
Author(s):  
Jayme D. Limbaugh ◽  
Gregory S. Wimer ◽  
Lynn H. Long ◽  
William H. Baird

2015 ◽  
Vol 4 (S1) ◽  
Author(s):  
Yoram Epstein ◽  
Savyon Mazgaoker ◽  
Doron Gruber ◽  
Daniel S Moran ◽  
Ran Yanovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document