Reaction time scales for sulphate reduction in sediments of acidic pit lakes and its relation to in-lake acidity neutralisation

2016 ◽  
Vol 73 ◽  
pp. 8-12 ◽  
Author(s):  
Stefan Peiffer
Lab on a Chip ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 2965-2974
Author(s):  
Zhengxin Li ◽  
Akihito Kiyama ◽  
Hongbo Zeng ◽  
Detlef Lohse ◽  
Xuehua Zhang

The kinetics of a model biphasic reaction at the interface of surface nanodroplets is quantitatively studied. The droplet reaction time scales with ∼Pe−2/3 of the reactant flow. Enhanced mass transport contributes to accelerated kinetics.


2020 ◽  
Author(s):  
Matti Rissanen ◽  
Shawon Barua ◽  
Jordan Krechmer ◽  
Theo Kurtén ◽  
Siddharth Iyer

<p>Atmospheric aerosols impact climate and health. Most of the smallest atmospheric nanoparticles are formed by oxidation of volatile organic compounds (VOC) and subsequent condensation of resulting low-volatile vapors. Biogenic terpenes are the largest atmospheric secondary organic aerosol (SOA) source, and among these, a-pinene likely the single most important compound.</p><p> Recently, autoxidation changed the paradigm of long processing time-scales in the formation of SOA [1, 2]. Previous experiments with cyclic unsaturated compounds have indicated the autoxidation to be very rapid, forming compounds with even 10 O-atoms infused to the carbon structure in a few seconds timeframe [3-6]. Berndt et al. noted that the whole process was apparently finished already at about 1.5 seconds reaction time in cyclohexene ozonolysis initiated autoxidation, indicated by the “frozen” peroxy radical product distribution beyond this reaction time [4].</p><p>Here we performed sub-second time-scale flow reactor experiments of a-pinene ozonolysis initiated autoxidation under ambient atmospheric conditions to constrain the timeframe needed to form the first highly-oxidized reaction products, and to inspect the peroxy radical dynamics at significantly shorter reaction times than have been previously possible. The shortest achievable reaction time was around 0.1 seconds and was enabled by the new Multi-scheme chemical IONization (MION) inlet setup [7]. Nitrate and bromide were used as reagent ions in this work.</p><p> </p><p><strong>References:</strong></p><ol><li>J. D. Crounse, et al. Autoxidation of Organic Compounds in the Atmosphere, J. Phys. Chem. Lett., 2013, 4, 3513-3520.</li> <li>M. Ehn, et al. A large source of low-volatility secondary organic aerosol, Nature, 2014, 506, 476-479.</li> <li>M. P. Rissanen, et al. The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene, J. Am. Chem. Soc., 2014, 136, 15596-15606.</li> <li>T. Berndt, et al. Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO<sub>2</sub> Radicals and Their Reactions with NO, NO<sub>2</sub>, SO<sub>2</sub>, and Other RO<sub>2</sub> Radicals, J. Phys. Chem. A, 2015, 119, 10336-10348.</li> <li>M. P. Rissanen, et al. Kulmala, Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene, J. Phys. Chem. A, 2015, 119, 4633-4650.</li> <li>T. Kurtén, et al. Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in α-Pinene Ozonolysis Products, J. Phys. Chem. A, 2015, 119, 11366-11375.</li> <li>M. P. Rissanen, et al. Multi-scheme chemical ionization inlet (MION) for fast switching of reagent ion chemistry in atmospheric pressure chemical ionization mass spectrometry (CIMS) applications, Atmos. Meas. Tech., 2019, 12, 6635-6646.</li> </ol>


Soft Matter ◽  
2019 ◽  
Vol 15 (21) ◽  
pp. 4276-4283 ◽  
Author(s):  
Matija Lovrak ◽  
Wouter E. Hendriksen ◽  
Michiel T. Kreutzer ◽  
Volkert van Steijn ◽  
Rienk Eelkema ◽  
...  

The ratio between diffusion and reaction time scales determines the size of soft matter objects made through self-assembly-coupled reaction–diffusion.


Author(s):  
James B. Pawley

Past: In 1960 Thornley published the first description of SEM studies carried out at low beam voltage (LVSEM, 1-5 kV). The aim was to reduce charging on insulators but increased contrast and difficulties with low beam current and frozen biological specimens were also noted. These disadvantages prevented widespread use of LVSEM except by a few enthusiasts such as Boyde. An exception was its use in connection with studies in which biological specimens were dissected in the SEM as this process destroyed the conducting films and produced charging unless LVSEM was used.In the 1980’s field emission (FE) SEM’s came into more common use. The high brightness and smaller energy spread characteristic of the FE-SEM’s greatly reduced the practical resolution penalty associated with LVSEM and the number of investigators taking advantage of the technique rapidly expanded; led by those studying semiconductors. In semiconductor research, the SEM is used to measure the line-width of the deposited metal conductors and of the features of the photo-resist used to form them. In addition, the SEM is used to measure the surface potentials of operating circuits with sub-micrometer resolution and on pico-second time scales. Because high beam voltages destroy semiconductors by injecting fixed charges into silicon oxide insulators, these studies must be performed using LVSEM where the beam does not penetrate so far.


1991 ◽  
Vol 1 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Edward Neçka
Keyword(s):  

GeroPsych ◽  
2011 ◽  
Vol 24 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Philippe Rast ◽  
Daniel Zimprich

In order to model within-person (WP) variance in a reaction time task, we applied a mixed location scale model using 335 participants from the second wave of the Zurich Longitudinal Study on Cognitive Aging. The age of the respondents and the performance in another reaction time task were used to explain individual differences in the WP variance. To account for larger variances due to slower reaction times, we also used the average of the predicted individual reaction time (RT) as a predictor for the WP variability. Here, the WP variability was a function of the mean. At the same time, older participants were more variable and those with better performance in another RT task were more consistent in their responses.


2006 ◽  
Vol 20 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Susanne Mayr ◽  
Michael Niedeggen ◽  
Axel Buchner ◽  
Guido Orgs

Responding to a stimulus that had to be ignored previously is usually slowed-down (negative priming effect). This study investigates the reaction time and ERP effects of the negative priming phenomenon in the auditory domain. Thirty participants had to categorize sounds as musical instruments or animal voices. Reaction times were slowed-down in the negative priming condition relative to two control conditions. This effect was stronger for slow reactions (above intraindividual median) than for fast reactions (below intraindividual median). ERP analysis revealed a parietally located negativity of the negative priming condition compared to the control conditions between 550-730 ms poststimulus. This replicates the findings of Mayr, Niedeggen, Buchner, and Pietrowsky (2003) . The ERP correlate was more pronounced for slow trials (above intraindividual median) than for fast trials (below intraindividual median). The dependency of the negative priming effect size on the reaction time level found in the reaction time analysis as well as in the ERP analysis is consistent with both the inhibition as well as the episodic retrieval account of negative priming. A methodological artifact explanation of this effect-size dependency is discussed and discarded.


Sign in / Sign up

Export Citation Format

Share Document