scholarly journals A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers

2015 ◽  
Vol 39 (20) ◽  
pp. 6103-6113 ◽  
Author(s):  
Mohammad Pourmahmood Aghababa
2021 ◽  
Vol 2021 ◽  
pp. 1-10 ◽  
Author(s):  
Meiling Tao ◽  
Xiongxiong He ◽  
Shuzong Xie ◽  
Qiang Chen

In this article, a singularity-free terminal sliding mode (SFTSM) control scheme based on the radial basis function neural network (RBFNN) is proposed for the quadrotor unmanned aerial vehicles (QUAVs) under the presence of inertia uncertainties and external disturbances. Firstly, a singularity-free terminal sliding mode surface (SFTSMS) is constructed to achieve the finite-time convergence without any piecewise continuous function. Then, the adaptive finite-time control is designed with an auxiliary function to avoid the singularity in the error-related inverse matrix. Moreover, the RBFNN and extended state observer (ESO) are introduced to estimate the unknown disturbances, respectively, such that prior knowledge on system model uncertainties is not required for designing attitude controllers. Finally, the attitude and angular velocity errors are finite-time uniformly ultimately bounded (FTUUB), and numerical simulations illustrated the satisfactory performance of the designed control scheme.


Robotica ◽  
2014 ◽  
Vol 33 (2) ◽  
pp. 451-462 ◽  
Author(s):  
Yana Yang ◽  
Changchun Hua ◽  
Huafeng Ding ◽  
Xinping Guan

SUMMARYA continuous finite-time control scheme for networked bilateral teleoperation is proposed in this brief. The terminal sliding mode technology is used and new master–slave torques are designed. With the new controller, the coordination error of the master manipulator and the slave manipulator converges to zero in finite time. Moreover, the reaching time and the sliding time can be derived. Finally, the comparisons are performed and simulations show the effectiveness of the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jin Li ◽  
Liu Yang

This paper proposes a continuous finite-time control scheme using a new form of terminal sliding mode (TSM) combined with a sliding mode disturbance observer (SMDO). The proposed controller is applied for nanopositioning of piezoelectric actuators (PEAs). Nonlinearities, mainly hysteresis, can drastically degrade the system performance. Same as the model imperfection, hysteresis can also be treated as uncertainties of the system. These uncertainties can be addressed by terminal sliding mode control (TSMC) for it is promising for positioning and tracking control. To further improve the robustness of the TSM controller, the SMDO is employed to estimate the bounded disturbances and uncertainties. The robust stability of the TSMC is proved through a Lyapunov stability analysis. Simulation results demonstrate the effectiveness of the proposed TSM/SMDO controller for both positioning and tracking applications. The fast response, few chattering, and high precision positioning and tracking performances can be achieved in finite time by the proposed controller.


2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Fang Wang ◽  
Jianmei Wang ◽  
Kun Wang ◽  
Changchun Hua ◽  
Qun Zong

In this paper, the finite-time control design problem for a class of nonlinear systems with matched and mismatched uncertainty is addressed. The finite-time control scheme is designed by integrating multi power reaching (MPR) law and finite-time disturbance observer (FTDO) into integral sliding mode control, where a novel sliding surface is designed, and the FTDO is applied to estimate the uncertainty. Then the fixed-time reachability of the MPR law is analyzed, and the finite-time stability of the closed-loop system is proven in the framework of Lyapunov stability theory. Finally, numerical simulation and the application to the flight control of hypersonic vehicle (HSV) are provided to show the effectiveness of the designed controller.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Dan-xu Zhang ◽  
Yang-wang Fang ◽  
Peng-fei Yang ◽  
You-li Wu ◽  
Tong-xin Liu

This paper proposed a finite time convergence global sliding mode control scheme for the second-order multiple models control system. Firstly, the global sliding surface without reaching law for a single model control system is designed and the tracking error finite time convergence and global stability are proved. Secondly, we generalize the above scheme to the second-order multimodel control system and obtain the global sliding mode control law. Then, the convergent and stable performances of the closed-loop control system with multimodel controllers are proved. Finally, a simulation example shows that the proposed control scheme is more effective and useful compared with the traditional sliding mode control scheme.


Automatica ◽  
2005 ◽  
Vol 41 (11) ◽  
pp. 1957-1964 ◽  
Author(s):  
Shuanghe Yu ◽  
Xinghuo Yu ◽  
Bijan Shirinzadeh ◽  
Zhihong Man

Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Jianqiang Yi

In this paper, a novel adaptive finite-time control of air-breathing hypersonic vehicles is proposed. Based on the immersion and invariance theory, an adaptive finite-time control method for general second-order systems is first derived, using nonsingular terminal sliding mode scheme. Then the method is applied to the control system design of a flexible air-breathing vehicle model, whose dynamics can be decoupled into first-order and second-order subsystems by time-scale separation principle. The main features of this hypersonic vehicle control system lie in the design flexibility of the parameter adaptive laws and the rapid convergence to the equilibrium point. Finally, simulations are conducted, which demonstrate that the control system has the features of fast and accurate tracking to command trajectories and strong robustness to parametric and non-parametric uncertainties.


Sign in / Sign up

Export Citation Format

Share Document