scholarly journals Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler–Pasternak elastic foundations

2016 ◽  
Vol 40 (2) ◽  
pp. 738-749 ◽  
Author(s):  
Belaїd Mechab ◽  
Ismail Mechab ◽  
Samir Benaissa ◽  
Mohammed Ameri ◽  
Boualem Serier
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Abdul Ghafar Shah ◽  
Aalia Ali ◽  
Muhmmad Nawaz Naeem ◽  
Shahid Hussain Arshad

Vibrations of a cylindrical shell composed of three layers of different materials resting on elastic foundations are studied out. This configuration is formed by three layers of material in thickness direction where the inner and outer layers are of isotropic materials and the middle is of functionally graded material. Love shell dynamical equations are considered to describe the vibration problem. The expressions for moduli of the Winkler and Pasternak foundations are combined with the shell dynamical equations. The wave propagation approach is used to solve the present shell problem. A number of comparisons of numerical results are performed to check the validity and accuracy of the present approach.


2017 ◽  
Vol 20 (8) ◽  
pp. 974-1008 ◽  
Author(s):  
Hoang Van Tung

This paper investigates the nonlinear response of doubly curved functionally graded material sandwich panels resting on elastic foundations, exposed to thermal environments and subjected to uniform external pressure. The material properties of both face sheets and core layer are assumed to be temperature dependent, and effective material properties of functionally graded material layers are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Formulations are based on first-order shear deformation shell theory taking geometrical nonlinearity, initial geometrical imperfection, Pasternak type elastic foundations, and tangential edge constraints into consideration. Approximate solutions are assumed to satisfy simply supported boundary conditions and Galerkin procedure is applied to derive expressions of buckling loads and nonlinear load–deflection relation. The effects of material, geometry and foundation parameters, face sheet thickness ratio, initial geometrical imperfection, thermal environments and degree of tangential restraint of edges on the snap-through instability, and nonlinear response of spherical and cylindrical functionally graded material sandwich panels are analyzed and discussed in detail.


2020 ◽  
pp. 089270572090410 ◽  
Author(s):  
Rajesh Kumar

Post-buckling analysis of functionally graded material (FGM) plates resting on Winkler and Pasternak elastic foundations subjected to thermomechanical loadings with circular cut-outs at centre and random material properties is presented. The material properties of each constituent’s materials, volume fraction index, thermal expansion coefficients, foundation stiffness parameters and thermal conductivities are taken as independent basic random input variables. The basic formulation is based on applying Reddy’s higher order shear deformation theory, which requires C1 continuous element approximation. A modified form C0 continuity is applied in the present investigation. A serum-free expansion medium with mean-centred first-order regular perturbation technique for composite plates is extended for FGM plates to solve the random eigenvalue problem. Typical numerical results are presented to examine the second-order statistics for effect of the volume fractions index, plate length-to-thickness ratios, plate aspect ratios, types of loadings, amplitude ratios, support conditions and various shape and size of holes with random thermomechanical properties. The results obtained by the present solution approach are validated with published papers and the robust method of simulation. It is found that the laminates with round cuts (FGM plates resting on Winkler and Pasternak elastic foundations) have a significant influence on the post-buckling response under Thermomechanical loading conditions. Present investigations are useful for the applications and further research.


2016 ◽  
Vol 58 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Noha Fouda

Sign in / Sign up

Export Citation Format

Share Document