Computational topology-based characterization of pore space changes due to chemical dissolution of rocks

2020 ◽  
Vol 88 ◽  
pp. 21-37 ◽  
Author(s):  
Vadim Lisitsa ◽  
Yaroslav Bazaikin ◽  
Tatyana Khachkova
2021 ◽  
Author(s):  
Aamer Albannay ◽  
Binh Bui ◽  
Daisuke Katsuki

Abstract Capillary condensation is the condensation of the gas inside nano-pore space at a pressure lower than the bulk dew point pressure as the result of multilayer adsorption due to the high capillary pressure inside the small pore throat of unconventional rocks. The condensation of liquid in nano-pore space of rock changes its mechanical and acoustic properties. Acoustic properties variation due to capillary condensation provides us a tool to monitor phase change in reservoir as a result of nano-confinement as well as mapping the area where phase change occurs as well as characterize pore size distribution. This is particularly important for tight formations where confinement has a strong effect on phase behavior that is challenging to measure experimentally. Theoretical studies have examined the effects of capillary condensation; however, these findings have not been verified experimentally. The main objective of this study is to experimentally investigate the effect of capillary condensation on the mechanical and acoustic properties of shale samples. The mechanical and acoustic characterization of the samples was carried out experimentally using a state-of-the-art tri-axial facility at the Colorado School of Mines. The experimental set-up is capable of the simultaneous acquisition of coupled stress, strain, resistivity, acoustic and flow data. Carbon dioxide was used as the pore pressure fluid in these experiments. After a comprehensive characterization of shale samples, experiments were conducted by increasing the pore pressure until condensation occurs while monitoring the mechanical and acoustic properties of the sample to quantify the effect of capillary condensation on the mechanical and acoustic properties of the sample. Experimental data show a 5% increase in Young's Modulus as condensation occurs. This increase is attributed to the increase in pore stiffness as condensation occurs reinforcing the grain contact. An initial decrease in compressional velocity was observed as pore pressure increases before condensation occurs which is attributed to the expansion of the pore volume when pore pressure increases. After this initial decrease, compressional velocity slightly increases at a pressure around 750 - 800 psi which is close to the condensation pressure. We also observed a noticeable increase in shear velocity when capillary condensation occurs, this could be due to the immobility of the condensed liquid phase at the pore throats. The changes of geomechanical and acoustic signatures were observed at around 750 - 800 psi at 27°C, which is the dew point pressure of the fluid in the nano-pore space of the sample at this temperature. While the unconfined bulk dew point pressure of carbon dioxide at the same temperature is 977 psi. Hence, this study marks the first measurement of the dew point of fluid in nano-pore space and potentially leads to the construction of the phase envelope of fluid under confinement.


2020 ◽  
Vol 17 (5) ◽  
pp. 1281-1297 ◽  
Author(s):  
Jian-Chun Guo ◽  
Hang-Yu Zhou ◽  
Jie Zeng ◽  
Kun-Jie Wang ◽  
Jie Lai ◽  
...  

Abstract NMR serves as an important technique for probing rock pore space, such as pore structure characterization, fluid identification, and petrophysical property testing, due to the reusability of cores, convenience in sample processing, and time efficiency in laboratory tests. In practice, NMR signal collection is normally achieved through polarized nuclei relaxation which releases crucial relaxation messages for result interpretation. The impetus of this work is to help engineers and researchers with petroleum background obtain new insights into NMR principals and extend existing methodologies for characterization of unconventional formations. This article first gives a brief description of the development history of relaxation theories and models for porous media. Then, the widely used NMR techniques for characterizing petrophysical properties and pore structures are presented. Meanwhile, limitations and deficiencies of them are summarized. Finally, future work on improving these insufficiencies and approaches of enhancement applicability for NMR technologies are discussed.


1989 ◽  
Vol 166 ◽  
Author(s):  
C. J. Glinka ◽  
L. C. Sandert ◽  
S. A. Wiset ◽  
N. F. Berk

ABSTRACTSmall angle neutron scattering has been used to characterize the structure of linear hydrocarbon chains chemically grafted to the internal pore surfaces of microporous silica particles. The aim of this work has been to relate the structure of the bonded adsorbate layers in these particles to their performance in, for example, reverse-phase liquid chromatography. By filling the pore space in the modified silica with a solution that matches the scattering density of the silica framework, the scattering from the adsorbate layers is enhanced and provides a sensitive probe of the effective thickness, uniformity and degree of solvent penetration in the layers. Results are presented for both monomeric and polymeric phases of alkyl chains ranging from C8 to C30 bonded to silica particles with a mean pore size of 100 nm.


2012 ◽  
Vol 1475 ◽  
Author(s):  
D.L. Engelberg ◽  
J.A. Duff ◽  
L. Murray ◽  
L. Dodds ◽  
N. Mobasher ◽  
...  

ABSTRACTA range of advanced imaging techniques have been brought together to provide a comprehensive picture of cement microstructure for nuclear waste immobilization. Image analysis of Nirex Reference Vault Backfill (NRVB) has been used to characterize the Calcium-Silicate-Hydrate (C-S-H) matrix fraction. Through weight loss measurements and digital image correlation of OPC-based cement blends we have quantified the development of microstructure surface strains during the initial 48 hrs hardening period. The build-up of displacements on the microstructure scale indicated grain-like compressive areas, surrounded by a network of tensile regions. Serial sectioning of NRVB using ultra-microtome cutting has been explored for advanced high-resolution 3D microstructure characterization, while X-ray Computed Tomography (XCT) has been used to obtain information of the 3-D pore space and size distribution of air pores in NRVB non-destructively.


Author(s):  
Д.И. Прохоров ◽  
Я.В. Базайкин ◽  
В.В. Лисица

В работе предложен алгоритм редукции трехмерных цифровых изображений для ускорения вычисления персистентных диаграмм, характеризующих изменения в топологии порового пространства образцов горной породы. Воксели для удаления выбираются исходя из структуры своей окрестности, что позволяет редуцировать изображение за линейное время. Показано, что эффективность алгоритма существенно зависит от сложности устройства порового пространства и размеров шагов фильтрации. A new algorithm for the reduction of three-dimensional digital images is proposed to improve the performance of persistence diagrams computing. These diagrams represent changes in topology of the pore space in the rock matrix. The algorithm has a linear complexity, since the removal of the voxel is based on the structure of its neighborhood. It is shown that the efficiency of the algorithm depends heavily on the complexity of the pore space and the size of filtering steps.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Yang ◽  
Jiangong Wang ◽  
Feng Ma ◽  
Yongshu Zhang ◽  
Yadong Bai ◽  
...  

Abstract Reservoir quality is a critical risk factor in basement reservoirs. Researches into basement reservoirs by petrographic analysis combined with X-ray diffraction, log identification, electron microscopy, field emission scanning electron microscopy, porosity and pulse-decay permeability and core analysis have provided insights into the characterization of the commonality, diversity and difference of the weathered basement rocks as gas reservoirs in the Dongping field. Geological structures, lithology and near-surface processes control the reservoir physical property together. From Wellblock Dp 3 to Wellblock Dp 17, the high uplift gradually transforms into the low slope area towards the center of basin, with the lithology changing as well, which results in different degrees of fracture development in the bedrock in different wellblocks. The basement lithologies are granite, granitic gneiss, and limestone with slate in Wellblock Dp3, Dp1 and Dp17, respectively. Though they all provide effective reservoir space for gas accumulation, the productivity of nature gas shows significant differences. Fractures are the main store space in the three wellblocks. The development of fractures gives rise to secondary porosity around them because of physical weathering and chemical dissolution, but they generate many inhomogeneous fractures and secondary solution pores, whether on the planar distribution or in vertical. In Wellblock Dp3, high angle fractures were generated under the action of structural stress mechanism, with a large number of secondary pores. The porosity is between 0.1 and 23.2%. In Wellblock Dp 1, low angle fractures were the main storage space, with plenty of solution pores mainly in melanocratic minerals. The porosity is between 0.1 and 18.8%. In Wellblock Dp 17, where short and dense fractures developed, the porosity is between 0.1 and 10.3%. The data indicate that the granite in the uplift in Wellblock Dp3 has better reservoir properties due to the stronger physical weathering and chemical dissolution. As the porosity gradually decreases towards the slope and low-lying area, the more favorable exploration area should be the uplift and slope area in the depression area. However, the effective caprock developed locally in Wellblock Dp3, which affected the gas accumulation. Meanwhile, the reservoirs’ petrophysical properties showed distintive variation with different depths in different wellblocks. High productivity layers are under the 200 m, 100 m and 200 m depths from the top of the basement rocks in Wellblock Dp 3, Wellblock Dp 1 and Wellblock Dp 17, respectively. This suggestion in this study will be of significance for guiding oil and gas exploration in front of the Altun Mountains.


Sign in / Sign up

Export Citation Format

Share Document