A numerical study of heat and mass transfer in a Darcy porous medium saturated with a couple stress fluid under rotational modulation

Author(s):  
Munyaradzi Rudziva ◽  
Precious Sibanda ◽  
Osman A.I Noreldin ◽  
Sicelo Goqo
2015 ◽  
Vol 15 (04) ◽  
pp. 1550042 ◽  
Author(s):  
S. HINA ◽  
M. MUSTAFA ◽  
T. HAYAT ◽  
A. ALSAEDI

Analysis is performed for the simultaneous effects of heat and mass transfer on the peristaltic transport of an electrically conducting couple-stress fluid in a compliant walls channel. The study may be useful in understanding the physiological flow of blood through micro-circulatory system in the presence of particle-size effect. Long wavelength and low Reynolds number aspects are taken into consideration. Exact solutions for stream function, temperature and concentration are derived. Impact of pertinent parameters like the couple-stress fluid parameter (γ), Hartman number (M), amplitude ratio (ϵ), elastic parameters (E1, E2, E3, E4, E5), Brinkman number (Br) and Schmidt number (Sc). It is observed that velocity and temperature distributions are greater for couple stress fluid when compared with the Newtonian fluid.


2021 ◽  
Vol 20 (4) ◽  
pp. 179-185
Author(s):  
Funmilayo H. Oyelami ◽  
Ebenezer O. Ige ◽  
Olaide Y. Saka-Balogun ◽  
Oluwaseyi A. Adeyemo

Author(s):  
Shamshuddin MD ◽  
Siva Reddy Sheri ◽  
O Anwar Bég

High temperature non-Newtonian materials processing provides a stimulating area for process engineering simulation. Motivated by emerging applications in this area, the present article studies time-dependent free convective flow of a chemically reacting micropolar fluid from a vertical plate oscillating in its own plane adjacent to a porous medium. Thermal radiative, viscous dissipation and wall couple stress effects are included. The Rosseland diffusion approximation is used to model uni-directional radiative heat flux in energy equation. Darcy’s model is adopted to mimic porous medium drag force effect. The governing two-dimensional conservation equations are normalized with appropriate variables and transformed into a dimensionless, coupled, nonlinear system of partial differential equations under the assumption of low Reynolds number. The governing boundary value problem is then solved under physically viable boundary conditions numerically with a finite element method based on the weighted residual approach. Graphical illustrations for velocity, micro-rotation (angular velocity), temperature, and concentration are obtained as functions of the emerging physical parameters, i.e. thermal radiation, viscous dissipation, first-order chemical reaction parameter, etc. Furthermore, friction factor (skin friction), surface heat transfer and mass transfer rates have been tabulated quantitatively for selected thermo-physical parameters. A comparison with previously published article is made to check the validity and accuracy of the present finite element solutions under some limiting cases and excellent agreement is attained. Additionally, a mesh independence study is conducted. The model is relevant to reactive polymeric materials processing simulation.


Sign in / Sign up

Export Citation Format

Share Document