Approach-angle-based three-dimensional indirect adaptive fuzzy path following of under-actuated AUV with input saturation

2021 ◽  
Vol 107 ◽  
pp. 102486
Author(s):  
Jialei Zhang ◽  
Xianbo Xiang ◽  
Lionel Lapierre ◽  
Qin Zhang ◽  
Weijia Li
Author(s):  
Jay Patrikar ◽  
Venkata Ramana Makkapati ◽  
Anay Pattanaik ◽  
Hardik Parwana ◽  
Mangal Kothari

Abstract In this paper, using the theory of input saturation, a novel path following guidance law for fixed-wing unmanned aerial vehicles (UAVs) is developed. The proposed guidance law is adapted from a pursuit plus line-of-sight guidance law. Furthermore, it employs inertial speed for computing the acceleration commands which adds an adaptive capability of accommodating vehicle speed changes due to external disturbances such as wind. The guidance law is initially developed for two-dimensional (2D) environments which enables vehicles to follow straight lines, circles, and ellipses in planar spaces. Lyapunov theory is used to establish its stability properties, followed by a comparative study with existing algorithms, proposed for 2D environments, to establish its efficacy. The guidance law is then extended for the case of three-dimensional (3D) environments, and appropriate simulation studies are performed. Finally, real-world flight tests for 2D as well as 3D cases are presented, establishing the applicability of the proposed law on UAVs.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


Author(s):  
Tsung-Chih Lin ◽  
Yu-Chen Lin ◽  
Majid Moradi Zirkohi ◽  
Hsi-Chun Huang

In this paper, a novel direct adaptive fuzzy moving sliding mode proportional integral (PI) tracking control of a three-dimensional (3D) overhead crane which is modeled by five highly nonlinear second-order ordinary differential equations is proposed. The fast and robust position regulation and antiswing control can be achieved based on the proposed approach. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions. Simultaneously, in order to achieve fast and robust regulation and to enhance robustness in the presence of disturbance and parameter variations, moving sliding mode control (SMC) is introduced to tradeoff between reaching phase and sliding phase. Hence, the sliding surface is moved by changing the magnitude of the slope by adaptive law and varying the intercept by tuning algorithm. Simulations performed using a scaled 3D mathematical model of the crane confirm that the proposed control scheme can keep the horizontal position of the payload invariable and suppress the swing of the payload effectively during the hoisting or lowing process.


Author(s):  
Yuanrong Chen ◽  
Jingfen Qiao ◽  
Jincun Liu ◽  
Ran Zhao ◽  
Dong An ◽  
...  

2021 ◽  
Vol 2121 (1) ◽  
pp. 012042
Author(s):  
Kankan Deng ◽  
Jianming Miao ◽  
Xingyu Sun

Abstract This paper proposes a novel robust controller for horizontal path-following problem of an underactuated AUV subject to multiple uncertainties and state constraints. Firstly, four reduced-order extended state observes (ESOs) are designed to estimate the multiple uncertainties, and the estimated values are adopted in the design of kinematic and dynamic controller. Secondly, to address the state constraints, the barrier Lyapunov function is incorporated with the kinematic controller. To resolve the problem of input saturation, the auxiliary design system is utilized in the dynamic controller. To address the problem of “explosion of complexity” inherent in the conventional back-stepping method, a nonlinear tracking differentiator is utilized to obtain the derivative of the desired yaw speed. Finally, the results of numerical simulation are performed to demonstrate the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document