scholarly journals Size effects of a portable two-phase electronics cooling loop

2013 ◽  
Vol 50 (1) ◽  
pp. 1174-1185 ◽  
Author(s):  
Tom Saenen ◽  
Martine Baelmans
Author(s):  
Tom Saenen ◽  
Martine Baelmans

A one dimensional dynamic system model is developed to accurately simulate a two-phase microchannel electronics cooling loop. This model is based on the single component mixture equations for mass, momentum and energy. These equations are solved numerically using a finite volume method in conjunction with the SIMPLE algorithm. To calculate the pressure losses and heat transfer state of the art empirical correlations are used. Furthermore size effects of a typical microchannel cooling system are investigated with the new model. Special attention is given to the accumulator size and its limitations for portable applications. A simple model to investigate the accumulator size effect on the loop is developed and compared to numerical results obtained from the system model. The influence of various loop parameters and possible improvements are also investigated. Finally the effect of using different coolants is studied.


2010 ◽  
Author(s):  
Darin Sharar ◽  
Nicholas R. Jankowski ◽  
Brian Morgan

2001 ◽  
Author(s):  
G. Hetsroni ◽  
A. Mosyak ◽  
Z. Segal

Abstract Experimental investigation of a heat sink for electronics cooling is performed. The objective is to keep the operating temperature at a relatively low level of about 323–333K, while reducing the undesired temperature variation in both the streamwise and transverse directions. The experimental study is based on systematic temperature, flow and pressure measurements, infrared radiometry and high-speed digital video imaging. The heat sink has parallel triangular microchannels with a base of 250μm. According to the objectives of the present study, Vertrel XF is chosen as the working fluid. Experiments on flow boiling of Vertrel XF in the microchannel heat sink are performed to study the effect of mass velocity and vapor quality on the heat transfer, as well as to compare the two-phase results to a single-phase water flow.


2001 ◽  
Author(s):  
S. I. Haider ◽  
Yogendra K. Joshi ◽  
Wataru Nakayama

Abstract The study presents a model for the two-phase flow and heat transfer in the closed loop, two-phase thermosyphon (CLTPT) involving co-current natural circulation. Most available models deal with two-phase thermosyphons with counter-current circulation within a closed, vertical, wickless heat pipe. The present research focuses on CLTPTs for electronics cooling that face more complex two-phase flow patterns than the vertical heat pipes, due to closed loop geometry and smaller tube size. The present model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser, and the falling tube. The homogeneous two-phase flow model is used to evaluate the friction pressure drop of the two-phase flow imposed by the available gravitational head through the loop. The saturation temperature dictates both the chip temperature and the condenser heat rejection capacity. Thermodynamic constraints are applied to model the saturation temperature, which also depends upon the local heat transfer coefficient and the two-phase flow patterns inside the condenser. The boiling characteristics of the enhanced structure are used to predict the chip temperature. The model is compared with experimental data for dielectric working fluid PF-5060 and is in general agreement with the observed trends. The degradation of condensation heat transfer coefficient due to diminished vapor convective effects, and the presence of subcooled liquid in the condenser are expected to cause higher thermal resistance at low heat fluxes. The local condensation heat transfer coefficient is a major area of uncertainty.


2009 ◽  
Vol 52 (15-16) ◽  
pp. 3456-3463 ◽  
Author(s):  
Mark Aaron Chan ◽  
Christopher R. Yap ◽  
Kim Choon Ng

Author(s):  
Yiding Cao ◽  
Mingcong Gao

This paper introduces a novel heat transfer mechanism that facilitates two-phase heat transfer while eliminating the so-called cavitation problem commonly encountered by a conventional pump. The heat transfer device is coined as the reciprocating-mechanism driven heat loop (RMDHL), which includes a hollow loop having an interior flow passage, an amount of working fluid filled within the loop, and a reciprocating driver. The hollow loop has an evaporator section, a condenser section, and a liquid reservoir. The reciprocating driver is integrated with the liquid reservoir and facilitates a reciprocating flow of the working fluid within the loop, so that liquid is supplied from the condenser section to the evaporator section under a substantially saturated condition and the so-called cavitation problem associated with a conventional pump is avoided. The reciprocating driver could be a solenoid-operated reciprocating driver for electronics cooling applications and a bellows-type reciprocating driver for high-temperature applications. Experimental study has been undertaken for a solenoid-operated heat loop in connection with high heat flux thermal management applications. Experimental results show that the heat loop worked very effectively and a heat flux as high as 300 W/cm2 in the evaporator section could be handled. The applications of the bellows-type reciprocating heat loop for gas turbine nozzle guide vanes and the leading edges of hypersonic vehicles are also illustrated. The new heat transfer device is expected to advance the current two-phase heat transfer device and open up a new frontier for further research and development.


Author(s):  
Raffaele L. Amalfi ◽  
Todd Salamon ◽  
Filippo Cataldo ◽  
Jackson B. Marcinichen ◽  
John R. Thome

Abstract The present study is focused on the experimental characterization of two-phase heat transfer performance and pressure drops within an ultra-compact heat exchanger (UCHE) suitable for electronics cooling applications. In this specific work, the UCHE prototype is anticipated to be a critical component for realizing a new passive two-phase cooling technology for high-power server racks, as it is more compact and lighter weight than conventional heat exchangers. This technology makes use of a novel combination of thermosyphon loops, at the server-level and rack-level, to passively cool an entire rack. In the proposed two-phase cooling technology, a smaller form factor UCHE is used to transfer heat from the server-level thermosyphon cooling loop to the rack-level thermosyphon cooling loop, while a larger form factor UCHE is used to reject the total heat from the server rack into the facility-level cooling loop. The UCHE is composed of a double-side-copper finned plate enclosed in a stainless steel enclosure. The geometry of the fins and channels on both sides are optimized to enhance the heat transfer performance and flow stability, while minimizing the pressure drops. These features make the UCHE the ideal component for thermosyphon cooling systems, where low pressure drops are required to achieve high passive flow circulation rates and thus achieve high critical heat flux values. The UCHE’s thermal-hydraulic performance is first evaluated in a pump-driven system at the Laboratory of Heat and Mass Transfer (LTCM-EPFL), where experiments include many configurations and operating conditions. Then, the UCHE is installed and tested as the condenser of a thermosyphon loop that rejects heat to a pumped refrigerant system at Nokia Bell Labs, in which both sides operate with refrigerants in phase change (condensation-to-boiling). Experimental results demonstrate high thermal performance with a maximum heat dissipation density of 5455 (kW/m3/K), which is significantly larger than conventional air-cooled heat exchangers and liquid-cooled small pressing depth brazed plate heat exchangers. Finally, a thermal performance analysis is presented that provides guidelines in terms of heat density dissipations at the server- and rack-level when using passive two-phase cooling.


Author(s):  
Jackson B. Marcinichen ◽  
John R. Thome ◽  
Raffaele L. Amalfi ◽  
Filippo Cataldo

Abstract Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extremely challenging because of the complex physics involved in the boiling and condensation processes; in particular, the most important challenge is to accurately predict the flow rate in the thermosyphon and thus the thermal performance. This paper presents an experimental validation to assess the predictive capabilities of JJ Cooling Innovation’s thermosyphon simulator against one independent data set that includes a wide range of operating conditions and system sizes, i.e. thermosyphon data for server-level cooling gathered at Nokia Bell Labs. Comparison between test data and simulated results show good agreement, confirming that the simulator accurately predicts heat transfer performance and pressure drops in each individual component of a thermosyphon cooling system (cold plate, riser, evaporator, downcomer (with no fitting parameters), and eventually a liquid accumulator) coupled with operational characteristics and flow regimes. In addition, the simulator is able to design a single loop thermosyphon (e.g. for cooling a single server’s processor), as shown in this study, but also able to model more complex cooling architectures, where many thermosyphons at server-level and rack-level have to operate in parallel (e.g. for cooling an entire server rack). This task will be performed as future work.


Sign in / Sign up

Export Citation Format

Share Document