Simple models for the heat exchange from exhaust gas to super- and sub-critical refrigerant R134a at high temperature differences

2015 ◽  
Vol 89 ◽  
pp. 990-1000 ◽  
Author(s):  
M.T. Zegenhagen ◽  
F. Ziegler
Alloy Digest ◽  
1995 ◽  
Vol 44 (9) ◽  

Abstract REMANIT 4509 was developed specially for silencers and exhaust gas purification plants. Due to its composition, this steel exhibits scale resistance up to 950 C and a high degree of corrosion resistance to the gases occurring in the exhaust system. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-613. Producer or source: Thyssen Stahl AG.


1981 ◽  
Vol 35 (6) ◽  
pp. 582-584 ◽  
Author(s):  
David A. Stephenson

The Raman spectra of CO2 and H2O have been measured from 1000 to 2200°K. The spectra are found to be well described by the simple models described previously. In particular, the simple partition functions of T−1 for CO2 and T−3/2 for H2O are adequate for describing the spectra over the temperature range of interest.


2013 ◽  
Vol 457-458 ◽  
pp. 423-427
Author(s):  
Xiao Qing Li ◽  
Xiao Yan Liu

With the development of oilfield exploration, the performance of electric submersible pump (ESP) has been enhanced very fast. It requires testing techniques develop at the same time. The most outstanding question is the testing of high temperature and pressure ESP. A testing well was drilled in Daqing in 1992. It keeps the water liquid state on 150 centigrade by high pressure. This system can simulate operational mode 3000 meters under the ground. But many new ESPs have been produced these years. The quondam testing system couldnt meet the testing requirement. A new testing system is desiderated eagerly. This paper developed a high temperature and pressure ESP testing experimentation system. Hydraulic/thermodynamic analysis calculation has been carried on. Friction resistance from constant pressure point to the suction inlet of hot water pump and the ESP in heating-forced cycle and experimentation primary cycle are calculated respectively. Keeping the water liquid state on 180 centigrade, constant pressure value was fixed on 2.5 MPa. The heat load is calculated including the heat that the water in the system and the equipment need and the heat loss. In order to protect ESP from emanating too much heat to keep the temperature and pressure of the system steady, heat exchange system has been designed. Cold load and heat exchange square have been calculated. Friction resistance and the size of the cold water cistern have been calculated. These provide necessary academic foundation for the testing experimentation of high temperature and pressure ESP.


1980 ◽  
Vol 39 (2) ◽  
pp. 900-905
Author(s):  
L. I. Urbanovich ◽  
V. A. Goryainov ◽  
V. V. Sevost'yanov ◽  
Yu. G. Boev ◽  
V. M. Niskovskikh ◽  
...  

Author(s):  
Y. Sasago ◽  
H. Nakamura ◽  
T. Odaka ◽  
A. Isobe ◽  
S. Komatsu ◽  
...  

Author(s):  
Lee Frederickson ◽  
Kyle Kitzmiller ◽  
Fletcher Miller

High temperature central receivers are on the forefront of concentrating solar power research. Current receivers use liquid cooling and power steam cycles, but new receivers are being designed to power gas turbine engines within a power cycle while operating at a high efficiency. To address this, a lab-scale Small Particle Heat Exchange Receiver (SPHER), a high temperature solar receiver, was built and is currently undergoing testing at the San Diego State University’s (SDSU) Combustion and Solar Energy Laboratory. The final goal is to design, build, and test a full-scale SPHER that can absorb 5 MWth and eventually be used within a Brayton cycle. The SPHER utilizes air mixed with carbon particles generated in the Carbon Particle Generator (CPG) as an absorption medium for the concentrated solar flux. Natural gas and nitrogen are sent to the CPG where the natural gas undergoes pyrolysis to carbon particles and nitrogen is used as the carrier gas. The resulting particle-gas mixture flows out of the vessel and is met with dilution air, which flows to the SPHER. The lab-scale SPHER is an insulated steel vessel with a spherical cap quartz window. For simulating on-sun testing, a solar flux is produced by a solar simulator, which consists of a 15kWe xenon arc lamp, situated vertically, and an ellipsoidal reflector to obtain a focus at the plane of the receiver window. The solar simulator has been shown to produce an output of about 3.25 kWth within a 10 cm diameter aperture. Inside of the SPHER, the carbon particles in the inlet particle-gas mixture absorb radiation from the solar flux. The carbon particles heat the air and eventually oxidize to carbon dioxide, resulting in a clear outlet fluid stream. Since testing was initiated, there have been several changes to the system as we have learned more about the operation. A new extinction tube was designed and built to obtain more accurate mass loading data. Piping and insulation for the CPG and SPHER were improved based on observations between testing periods. The window flange and seal have been redesigned to incorporate window film cooling. These improvements have been made in order to achieve the lab scale SPHER design objective gas outlet flow of 650°C at 5 bar.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5552
Author(s):  
Jongtae Kim ◽  
Seongho Hong ◽  
Ki Han Park ◽  
Jin Heok Kim ◽  
Jeong Yun Oh

Hydrogen can be produced in undesired ways such as a high temperature metal oxidation during an accident. In this case, the hydrogen must be carefully managed. A hydrogen mitigation system (HMS) should be installed to protect a containment of a nuclear power plant (NPP) from hazards of hydrogen produced by an oxidation of the fuel cladding during a severe accident in an NPP. Among hydrogen removal devices, passive auto-catalytic recombiners (PARs) are currently applied to many NPPs because of passive characteristics, such as not requiring a power supply nor an operators’ manipulations. However, they offer several disadvantages, resulting in issues related to hydrogen control by PARs. One of the issues is a hydrogen stratification in which hydrogen is not well-mixed in a compartment due to the high temperature exhaust gas of PARs and accumulation in the lower part. Therefore, experimental simulation on hydrogen stratification phenomenon by PARs is required. When the hydrogen stratification by PARs is observed in the experiment, the verification and improvement of a PAR analysis model using the experimental results can be performed, and the hydrogen removal characteristics by PARs installed in an NPP can be evaluated using the improved PAR model.


Sign in / Sign up

Export Citation Format

Share Document