Dynamic optimization method of secondary cooling water quantity in continuous casting based on three-dimensional transient nonlinear convective heat transfer equation

2019 ◽  
Vol 160 ◽  
pp. 113988 ◽  
Author(s):  
Yang Yu ◽  
Xiaochuan Luo ◽  
Huaxi (Yulin) Zhang ◽  
Qingxin Zhang
2014 ◽  
Vol 926-930 ◽  
pp. 802-805
Author(s):  
Jun Li Jia ◽  
Jin Hong Zhang ◽  
Guo Zhen Wang

Efficient secondary cooling water control level slab continuous casting process and quality are closely related. Casting solidification heat transfer model is the basis of process control and optimization, heat transfer model based on determining the secondary cooling system is the most widely used method for casting production process can be simulated. However, when considering the many factors affecting the production and input conditions change significantly, real-time and strain of this method is not guaranteed. Therefore, the artificial intelligence optimization algorithms such as genetic algorithms, neural networks, fuzzy controllers, introducing continuous casting secondary cooling water distribution and dynamics of optimal control methods, the rational allocation of caster secondary cooling water and dynamic control is important.


2011 ◽  
Vol 80-81 ◽  
pp. 81-85
Author(s):  
Jiao Cheng Ma ◽  
Hui Zhao Sun ◽  
Xue Bin Wang ◽  
Xia Lv

In order to more accurate simulation the solidification of billet continuous casting. The measured shell thickness and surface temperature have been used to revise the heat transfer model. The calculated results of the model are in excellent agreement with the experimental ones based on an actual casting machine. The revised model can excellent to simulate the billet solidification process. So it provides the possibility for better simulation the dynamic solidification process and optimizing of the secondary cooling water.


2010 ◽  
Vol 27 (5) ◽  
pp. 658-673 ◽  
Author(s):  
M.Q. Al‐Odat

PurposeThe purpose of this paper is to conduct a full three‐dimensional numerical analysis to simulate the thermal behavior of high speed steel (HSS) cutting tool, with temperature dependent thermal properties, in dry machining with embedded heat pipe (HP), and investigate the effects of HP installation, variable thermal properties, generated heat flux and cutting speed.Design/methodology/approachThe heat transfer equation used to predict cutting tool temperature is parabolic partial differential equation. Grid points including independent variables are initially formed in solution of partial differential equation by finite element method (FEM). In this paper, one‐dimensional heat transfer equation with variable thermophysical properties is solved by FEM.FindingsIn this paper, the heat transfer equation in cutting tool is solved for variable thermophysical properties and the temperature field and temperature history are obtained. Variable thermophysical properties are considered to display the temperature fields in the cutting tool.Originality/valueA full three‐dimensional numerical analysis is conducted to simulate the thermal behavior of HSS cutting tool, with temperature dependent thermal properties, in dry machining with embedded HP. The heat conduction equation is solved by FEM analysis.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 777-780
Author(s):  
Huan Sun ◽  
Xing-Hua Liu

In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012006
Author(s):  
A G Kirdyashkin ◽  
A A Kirdyashkin ◽  
A V Borodin ◽  
V S Kolmakov

Abstract Temperature distribution in the upper mantle underneath the continent, as well as temperature distribution in the lower mantle, is obtained. In the continental lithosphere, the solution to the heat transfer equation is obtained in the model of conduction heat transfer with inner heat within the crust. To calculate the temperature distribution in the upper and lower mantle, we use the results of laboratory and theoretical modeling of free convective heat transfer in a horizontal layer heated from below and cooled from above.


Sign in / Sign up

Export Citation Format

Share Document