Flow and heat transfer of supercritical water in a rifled tube with axially non-uniform heating

2020 ◽  
Vol 169 ◽  
pp. 114923 ◽  
Author(s):  
Yajuan Jin ◽  
Zhouhang Li ◽  
Nan Yuan ◽  
Yecheng Yao ◽  
Yuling Zhai ◽  
...  
2013 ◽  
Vol 437 ◽  
pp. 120-123
Author(s):  
Ge Ping Wu ◽  
Ping Lu ◽  
Jun Wang

Heat transfer and fluid flow in the microchannel cooling passages of plane cell type MTPV systems are numerically investigated. The Finite Volume method is adopted for the governing equations discretization; The SIMPLE method is applied to deal with the linkage between pressure and velocities. The microscale effects, such as surface roughness and viscous dissipation are taken into account. Influence of non-uniform heating condition on the flow and heat transfer characteristics of the microchannel cooling passage was discussed. The computer simulations were validated by the experiment data. Numerical results confirm that the effects of non-uniform heating condition on fluid flow and heat transfer in microchannels could not be neglected.


Author(s):  
Malwina Gradecka ◽  
Roman Thiele ◽  
Henryk Anglart

This paper presents a steady-state computational fluid dynamics approach to supercritical water flow and heat transfer in a rod bundle with grid spacers. The current model was developed using the ANSYS Workbench 15.0 software (CFX solver) and was first applied to supercritical water flow and heat transfer in circular tubes. The predicted wall temperature was in good agreement with the measured data. Next, a similar approach was used to investigate three-dimensional (3D) vertical upward flow of water at supercritical pressure of about 25 MPa in a rod bundle with grid spacers. This work aimed at understanding thermo- and hydrodynamic behavior of fluid flow in a complex geometry at specified boundary conditions. The modeled geometry consisted of a 1.5-m heated section in the rod bundle, a 0.2-m nonheated inlet section, and five grid spacers. The computational mesh was prepared using two cell types. The sections of the rods with spacers were meshed using tetrahedral cells due to the complex geometry of the spacer, whereas sections without spacers were meshed with hexahedral cells resulting in a total of 28 million cells. Three different sets of experimental conditions were investigated in this study: a nonheated case and two heated cases. The nonheated case, A1, is calculated to extract the pressure drop across the rod bundle. For cases B1 and B2, a heat flux is applied on the surface of the rods causing a rise in fluid temperature along the bundle. While the temperature of the fluid increases along with the flow, heat deterioration effects can be present near the heated surface. Outputs from both B cases are temperatures at preselected locations on the rods surfaces.


Author(s):  
Zhongyun Ju ◽  
Tao Zhou ◽  
Jingjing Li ◽  
Zejun Xiao

Software CFX is used to build a typical natural circulation loop to study flow and heat transfer characteristics of water vapor, the vapor-liquid two-phase and supercritical water under natural circulation. During the process of natural circulation, the variation of parameters, heat transfer coefficient and mass flow is compared. It is found that when formed a natural circulation, the steam has a lower mass flow and heat transfer coefficient, while the two parameters of two-phase and supercritical water are higher. Indicates that the heat transfer capability of steam is weak, the steam cannot transfer heat out opportunely when serious accidents take place. The two-phase water is of high heat transfer coefficient. Supercritical water is of strong exchange capacity, supercritical water under natural circulation is a promising flow pattern.


Sign in / Sign up

Export Citation Format

Share Document