Computational Fluid Dynamics Investigation of Supercritical Water Flow and Heat Transfer in a Rod Bundle With Grid Spacers

Author(s):  
Malwina Gradecka ◽  
Roman Thiele ◽  
Henryk Anglart

This paper presents a steady-state computational fluid dynamics approach to supercritical water flow and heat transfer in a rod bundle with grid spacers. The current model was developed using the ANSYS Workbench 15.0 software (CFX solver) and was first applied to supercritical water flow and heat transfer in circular tubes. The predicted wall temperature was in good agreement with the measured data. Next, a similar approach was used to investigate three-dimensional (3D) vertical upward flow of water at supercritical pressure of about 25 MPa in a rod bundle with grid spacers. This work aimed at understanding thermo- and hydrodynamic behavior of fluid flow in a complex geometry at specified boundary conditions. The modeled geometry consisted of a 1.5-m heated section in the rod bundle, a 0.2-m nonheated inlet section, and five grid spacers. The computational mesh was prepared using two cell types. The sections of the rods with spacers were meshed using tetrahedral cells due to the complex geometry of the spacer, whereas sections without spacers were meshed with hexahedral cells resulting in a total of 28 million cells. Three different sets of experimental conditions were investigated in this study: a nonheated case and two heated cases. The nonheated case, A1, is calculated to extract the pressure drop across the rod bundle. For cases B1 and B2, a heat flux is applied on the surface of the rods causing a rise in fluid temperature along the bundle. While the temperature of the fluid increases along with the flow, heat deterioration effects can be present near the heated surface. Outputs from both B cases are temperatures at preselected locations on the rods surfaces.

Author(s):  
Alexander Kayne ◽  
Ramesh Agarwal

In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.


2020 ◽  
Vol 6 (2) ◽  
pp. 33-42
Author(s):  
Ritu Raj ◽  
Vardan Singh Nayak

Present study provides guidelines and recommendations for solving film boiling problems in steel plate production, where the surface temperature of steel plate is much higher than the saturation temperature of the liquid in contact with the plate surface and the entire steel plate surface is immersed in water. Due to the boiling mass exchange occurring at the vapor liquid interface bubbles of steam are periodically produced and emitted upward such a regime is known as film boiling. A computational fluid dynamics analysis of steel plate using VOF multiphase model moving at different velocity i.e. 0.1 to 0.5 m/sec. the volume of fraction for vapor phase have been obtained for different time interval, the generation of bubbles starts moving upwards after 0.05 sec, as time goes the formation of vapor bubbles generate and collapse more rapidly because the thermal boundary is very thin and the fluid temperature around the bubbles almost equal to the saturation temperature. The thermal properties of the steel plate are implicit to be constant with temperature for convenience because the present study is focused on the boiling heat transfer on the steel plate. The size of element is set as 0.1 mm to generate mesh and quad-4 rectangular elements used are which is a rectangular in shape with four nodes on each element are applied for the analysis. Results show that that the 37.98% of Convective heat transfer coefficient of mixture is increased and 13.1% of temperature drop has been observed with 40.67% of heat flux increased for the steel plate moving at 0.1 m/sec.


Author(s):  
V. G. Razumovskiy ◽  
Eu. N. Pis’mennyi ◽  
Kh. Sidawi ◽  
I. L. Pioro ◽  
A. Eu. Koloskov

There have been relatively few publications detailing heat transfer to supercritical water (SCW) flowing through a channel with a bundle or just with a single rod (annular channel) as compared to heat transfer to SCW in bare tubes. In the present paper, results of experimental heat transfer to SCW flowing upward in an annular channel with a heated rod equipped with four helical ribs and a 3-rod bundle (rods are also equipped with four helical ribs) are discussed. The experimental results include bulk-fluid-temperature, wall-temperature, and heat-transfer-coefficient (HTC) profiles along the heated length (485 mm) for these flow geometries. Data obtained from this study could be applicable as a reference estimation of heat transfer for future fuel-bundle designs.


Author(s):  
Stefan D. Mihić ◽  
Sorin Cioc ◽  
Ioan D. Marinescu ◽  
Michael C. Weismiller

This paper introduces a set of research oriented computational fluid dynamics (CFD) 3D models used to simulate the fluid flow and heat transfer in a grinding process. The most important features of these models are described and some representative simulation results are presented, along with comparisons to published experimental data. Distributions of temperatures, pressures, velocities, and liquid volume fractions in and around the grinding region are obtained in great detail. Such results are essential in studying the influence of the fluid on the grinding process, as well as in determining the best fluid composition and supply parameters for a given application. The simulation results agree well with experimental global flow rates, temperature, and pressure values, showing the feasibility of CFD simulations in grinding applications.


2019 ◽  
Vol 5 (4) ◽  
Author(s):  
Ganesh Lal Kumawat ◽  
Anuj Kumar Kansal ◽  
Naresh Kumar Maheshwari ◽  
Avaneesh Sharma

The clearance between fuel rods is maintained by spacer grid or helical wire wrap. Thermal-hydraulic characteristics inside fuel rod bundle are strongly influenced by the spacer grid geometry and the bundle pitch-to-diameter (P/D) ratio. This includes the maximum fuel temperature, critical heat flux, as well as pressure drop through the fuel bundle. An understanding of the detailed structure of flow mixing and heat transfer in a fuel rod bundle geometry is therefore an important aspect of reactor core design, both in terms of the reactor's safe and reliable operation, and with regard to optimum power extraction. In this study, computational fluid dynamics (CFD) simulations are performed to investigate isothermal turbulent flow mixing and heat transfer behavior in 4 × 4 rod bundle with twist-vane spacer grid with P/D ratio of 1.35. This work is carried out under International Atomic Energy Agency (IAEA) co-ordinated research project titled as “Application of Computational Fluid Dynamics (CFD) Codes for Nuclear Power Plant Design.” CFD simulations are performed using open source CFD code OpenFOAM. Numerical results are compared with experimental data from Korea Atomic Energy Research Institute (KAERI) and found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document