scholarly journals Characteristics of black carbon aerosol mixing state over an urban region deduced using single particle soot photometer (SP2) and differential mobility analyzer (DMA)

2020 ◽  
Vol 11 (3) ◽  
pp. 574-582
Author(s):  
B. Sarangi ◽  
S. Ramachandran ◽  
T.A. Rajesh ◽  
V.K. Dhaker
2017 ◽  
Author(s):  
Yuxuan Zhang ◽  
Hang Su ◽  
Simonas Kecorius ◽  
Zhibin Wang ◽  
Min Hu ◽  
...  

Abstract. Black carbon (BC) aerosol particles play an important role in regulating earth's climate and their climate effects depend on their mixing state. During the CAREBeijing 2013 campaign, we measured the size-resolved mixing state of refractory BC particles in North China Plain and performed intercomparison between a single particle soot photometer (SP2) and a volatility tandem differential mobility analyzer (VTDMA). The intercomparison shows a good agreement between the optical particle diameter determined by SP2 and the mobility particle diameter determined by VTDMA for non-BC as well as for internally mixed refractory BC particles. The VTDMA shows a higher concentration of refractory particles than that of the SP2, which suggests the existence of a large fraction of low volatile non-BC aerosols. Following parameters were constrained by closure studies to improve the inversion of the mixing state of ambient BC (i.e., coating thickness (CT) and shell/core ratio (Dp / Dc)) by SP2: a) refractive indices (RI) of 1.42 and 1.67–0.56i for non-BC and rBC core components, respectively, b) refractory BC (rBC) core density of 1.2 g cm−3 for internally-mixed BC particles, and c) an effective density range of 0.25–0.45 g cm−3 for externally-mixed BC particles. Moreover, the upper limit of the measurable particle size of SP2 was extended by the leading-edge-only (LEO) fit from ~ 400 nm to ~ 550 nm as confirmed by the VTDMA measurement. Based on the improved inversion from SP2 measurement, we found that non-BC containing particles, internally-mixed BC and externally-mixed BC contribute 85–90 %, 5–7 % and 5–10 % of the total aerosol number in the size range of 200 nm to 350 nm. The number fraction of internally-mixed BC in total BC-containing aerosols (Fin) shows pronounced diurnal cycles with a peak around noon time and an apparent turnover rate up to 6–9 % h−1. Such diurnal cycles are similar to the finding of Cheng et al. (2012) suggesting the competing effect of emissions and aging processes. In this study, the observed internally-mixed BC particles in the polluted regional NCP (North China Plain) background site (Xianghe) suggest a rapid aging process of BC on the regional scale. During the intensive field study period, ~ 80 % of internally-mixed BC particles at 200–300 nm showed a Dp / Dc ratio of more than 2, accompanying with an average value of 2.3–2.8. Meanwhile, the CT of internally-mixed BC particles (200–350 nm) with rBC core size of 80–200 nm was in the range of 50–150 nm. Compared with previous measurements in developed countries, the observed BC particles on regional scale (i.e., internally-mixed BC particles) were more-aged, indicating stronger optical and climate effect of BC on the regional scale in northern China.


2017 ◽  
Author(s):  
Guohua Zhang ◽  
Qinhao Lin ◽  
Long Peng ◽  
Xinhui Bi ◽  
Duohong Chen ◽  
...  

Abstract. In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles in a size range of 0.1–1.6 µm and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and were activated into cloud droplets to the same extent as all the measured particles. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were activated less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Since limited information on BC-containing particles in the free troposphere is available, the results also provide an important reference for the representation of BC concentrations, properties, and climate impacts in modeling studies.


2020 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Krishnaswamy Krishnamoorthy ◽  
Sreedharan Krishnakumari Satheesh ◽  
Mukunda M. Gogoi ◽  
...  

2012 ◽  
Vol 51 ◽  
pp. 21-28 ◽  
Author(s):  
Xiao-Feng Huang ◽  
Tian-Le Sun ◽  
Li-Wu Zeng ◽  
Guang-He Yu ◽  
Sheng-Ji Luan

2018 ◽  
Vol 18 (9) ◽  
pp. 6907-6921 ◽  
Author(s):  
Jingye Ren ◽  
Fang Zhang ◽  
Yuying Wang ◽  
Don Collins ◽  
Xinxin Fan ◽  
...  

Abstract. Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external–internal size-resolved, abbreviated as EI–SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p∕m) were 0.90 – 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT–BK scheme) shows good closure with RCCN_p∕m of 1.0 –1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT–SR scheme) achieves better closure than the INT–BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI–SR and INT–SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p∕m of 0.66 – 0.75) when using the schemes of external mixtures with bulk (EXT–BK scheme) or size-resolved composition (EXT–SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.


2013 ◽  
Vol 69 ◽  
pp. 118-123 ◽  
Author(s):  
Zi-Juan Lan ◽  
Xiao-Feng Huang ◽  
Kuang-You Yu ◽  
Tian-Le Sun ◽  
Li-Wu Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document