Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems

2018 ◽  
Vol 128 ◽  
pp. 35-42 ◽  
Author(s):  
Tian'an Zhang ◽  
Yiqi Luo ◽  
Han Y.H. Chen ◽  
Honghua Ruan
2020 ◽  
Vol 100 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Guoyong Yan ◽  
Xiongde Dong ◽  
Binbin Huang ◽  
Honglin Wang ◽  
Ziming Hong ◽  
...  

We conducted a field experiment with four levels of simulated nitrogen (N) deposition (0, 2.5, 5, and 7.5 g N m−2 yr−1, respectively) to investigate the response of litter decomposition of Pinus koraiensis (PK), Tilia amurensis (TA), and their mixture to N deposition during winter and growing seasons. Results showed that N addition significantly increased the mass loss of PK litter and significantly decreased the mass loss of TA litter throughout the 2 yr decomposition processes, which indicated that the different responses in the decomposition of different litters to N addition can be species specific, potentially attributed to different litter chemistry. The faster decomposition of PK litter with N addition occurred mainly in the winter, whereas the slower decomposition of TA litter with N addition occurred during the growing season. Moreover, N addition had a positive effect on the release of phosphorus, magnesium, and manganese for PK litter and had a negative effect on the release of carbon, iron, and lignin for TA litter. Decomposition and nutrient release from mixed litter with N addition showed a non-additive effect. The mass loss from litter in the first winter and over the entire study correlated positively with the initial concentration of cellulose, lignin, and certain nutrients in the litter, demonstrating the potential influence of different tissue chemistries.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 377 ◽  
Author(s):  
Liyan Zhuang ◽  
Qun Liu ◽  
Ziyi Liang ◽  
Chengming You ◽  
Bo Tan ◽  
...  

Litter decomposition plays a critical role in regulating biogeochemical cycles in terrestrial ecosystems and is profoundly impacted by increasing atmospheric nitrogen (N) deposition. Here, a N manipulation experiment was conducted to explore the effects of N additions (0 kg N ha−1 yr−1, 20 kg N ha−1 yr−1 and 40 kg N ha−1 yr−1) on decay rates and nutrients release of two contrasting species, the evergreen and nutrient-poor Michelia wilsonii and the deciduous and nutrient-rich Camptotheca acuminata, using a litterbag approach at the western edge of the Sichuan Basin of China. The decay rate and the mineralization of N and phosphorus (P) was faster in nutrient-rich C. acuminata litter than in nutrient-poor M. wilsonii litter, regardless of N regimes. N additions tended to decrease the decay constant (k value) in M. wilsonii litter, but had no effect on C. acuminata litter. N additions had no significant effects on carbon (C) release of both litter types. N additions showed negative effects on N and P release of M. wilsonii litter, particularly in the late decomposition stage. Moreover, for C. acuminata litter, N additions did not affect N release, but retarded P release in the late stage. N additions did not affect the C:N ratio in both litter types. However, N additions—especially high-N addition treatments—tended to reduce C:P and N:P ratios in both species. The effect of N addition on N and P remaining was stronger in M. wilsonii litter than in C. acuminata litter. The results of this study indicate that N additions retarded the nutrients release of two foliar litters. Thus, rising N deposition might favor the retention of N and P via litter decomposition in this specific area experiencing significant N deposition.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Shu Liao ◽  
Siyi Tan ◽  
Yan Peng ◽  
Dingyi Wang ◽  
Xiangyin Ni ◽  
...  

Abstract Background China’s terrestrial ecosystems have been receiving increasing amounts of reactive nitrogen (N) over recent decades. External N inputs profoundly change microbially mediated soil carbon (C) dynamics, but how elevated N affects the soil organic C that is derived from microbial residues is not fully understood. Here, we evaluated the changes in soil microbial necromass C under N addition at 11 forest, grassland, and cropland sites over China’s terrestrial ecosystems through a meta-analysis based on available data from published articles. Results Microbial necromass C accounted for an average of 49.5% of the total soil organic C across the studied sites, with higher values observed in croplands (53.0%) and lower values in forests (38.6%). Microbial necromass C was significantly increased by 9.5% after N addition, regardless of N forms, with greater stimulation observed for fungal (+ 11.2%) than bacterial (+ 4.5%) necromass C. This increase in microbial necromass C under elevated N was greater under longer experimental periods but showed little variation among different N application rates. The stimulation of soil microbial necromass C under elevated N was proportional to the change in soil organic C. Conclusions The stimulation of microbial residues after biomass turnover is an important pathway for the observed increase in soil organic C under N deposition across China’s terrestrial ecosystems.


2018 ◽  
Author(s):  
Weiming Yan ◽  
Zhouping Shangguan ◽  
Yangquanwei Zhong

Abstract. Ultraviolet (UV) radiation plays an important role in litter decomposition. Despite years of research, it is still not fully understood that the role of UV radiation in litter decomposition and carbon (C) and nutrient release, as well as the direct (litter decay directly exposed to UV) and indirect (plants received UV during growth) effects. In this study, a meta-analysis that comprised 54 published studies concerning UV radiation experiments, including 598 observations, was performed to quantify the responses of litter decomposition and C and nutrient release to UV radiation. The direct and indirect effects of UV-B enhancement on litter decomposition did not differ, but the direct effects of litter weight loss were more sensitive than the indirect effects under UV attenuation. Changes in UV radiation did not affect litter decomposition under laboratory conditions, but litter type only affected the rate of decomposition. In addition, the weight loss under UV radiation exhibited three-stage temporal dynamics: UV enhancement accelerated litter decomposition but required UV accumulation, whereas the UV attenuation effect decreased with time. The litter decomposition rates increased with decreasing precipitation (


2021 ◽  
Author(s):  
jiyou yuan ◽  
zhiyun Ouyang ◽  
Yirong SU ◽  
Yun Wang

Abstract Purpose Litter decomposition is a key process of nutrient cycling in terrestrial ecosystems, an important part of the global carbon budget, and deeply affected by global atmospheric nitrogen deposition. However, the effects of different forms of N addition on litter decomposition and nutrient release are unclear in a cold temperate coniferous forest in a subtropical Chinese plateau. Methods Three N sources (NH4)2SO4, NaNO3, and NH4NO3 were used in the gradient N deposition method. Each N source was divided into four treatments, from low to high, they were CK (control 0 kg N·hm− 2·a− 1), low N (low-N 5 kg N·hm− 2·a− 1), medium n (medium-N 15 kg N·hm− 2·a− 1), high N (high-30 kg N·hm− 2·a− 1), and each treatment repeated three times. Results After two years, the litter decomposition rates of low and medium ammonium nitrate treatments were the fastest as compared to the control, while high and low ammonium nitrate treatments were the slowest. Under the same nitrogen deposition conditions, the litter decomposition rates of low nitrogen treatments were higher than high nitrogen treatments. The order of litter decomposition rates was ammonium nitrate > ammonium sulfate > sodium nitrate. Nitrogen deposition decreased the amount of C in litter leaves but increased N and P levels slightly. Phosphorus changes over time were more complex than C and N over time. Conclusions These results showed that high nitrogen deposition in the future could increase litter decomposition rates and delay the nutrient release, which may be beneficial to improve soil carbon sequestration.


2019 ◽  
Vol 28 (5) ◽  
pp. 690-724 ◽  
Author(s):  
Kai Yue ◽  
Yan Peng ◽  
Dario A. Fornara ◽  
Koenraad Van Meerbeek ◽  
Lars Vesterdal ◽  
...  

Author(s):  
Lili Wei

Coastal wetlands are among the most carbon-rich ecosystems in the world. Litter decomposition is a major process controlling soil carbon input. Litter mixing has shown a non-additive effect on the litter decomposition of terrestrial plants particularly of those species having contrasting litter quality. But the non-additive effect has been rarely tested in coastal plants which generally having low-quality litters. We selected three common mangrove species and one saltmarsh species, co-occurring in subtropical coasts, to test whether the non-additive effect occurs when the litters of these coastal species mixing together. We are also concerned whether the changes in the decomposition rate of litter will affect the nutrient contents in waters. A litter-bag experiment was carried out in a glasshouse with single and mixed leaf litters. A non-additive effect was observed in the litter mixtures of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic). Whereas, the mixture of A. corniculatum (mangrove species) and Spartina alterniflora (saltmarsh species) showed an additive effect. The strength of the non-additive effect was unrelated to the initial trait dissimilarity of litters. Instead, the decomposition rate and mass remaining of litter mixtures were strongly related to the carbon concentrations in litters. Nutrient content in waters was dependent on the decomposition rate of litter mixtures but not on the initial nutrient concentrations in litters. Despite the behind mechanisms were not yet revealed by the current study, these findings have improved our understanding of the litter decomposition of coastal species and the consequent nutrient release.


Sign in / Sign up

Export Citation Format

Share Document