scholarly journals Nitrogen Additions Retard Nutrient Release from Two Contrasting Foliar Litters in a Subtropical Forest, Southwest China

Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 377 ◽  
Author(s):  
Liyan Zhuang ◽  
Qun Liu ◽  
Ziyi Liang ◽  
Chengming You ◽  
Bo Tan ◽  
...  

Litter decomposition plays a critical role in regulating biogeochemical cycles in terrestrial ecosystems and is profoundly impacted by increasing atmospheric nitrogen (N) deposition. Here, a N manipulation experiment was conducted to explore the effects of N additions (0 kg N ha−1 yr−1, 20 kg N ha−1 yr−1 and 40 kg N ha−1 yr−1) on decay rates and nutrients release of two contrasting species, the evergreen and nutrient-poor Michelia wilsonii and the deciduous and nutrient-rich Camptotheca acuminata, using a litterbag approach at the western edge of the Sichuan Basin of China. The decay rate and the mineralization of N and phosphorus (P) was faster in nutrient-rich C. acuminata litter than in nutrient-poor M. wilsonii litter, regardless of N regimes. N additions tended to decrease the decay constant (k value) in M. wilsonii litter, but had no effect on C. acuminata litter. N additions had no significant effects on carbon (C) release of both litter types. N additions showed negative effects on N and P release of M. wilsonii litter, particularly in the late decomposition stage. Moreover, for C. acuminata litter, N additions did not affect N release, but retarded P release in the late stage. N additions did not affect the C:N ratio in both litter types. However, N additions—especially high-N addition treatments—tended to reduce C:P and N:P ratios in both species. The effect of N addition on N and P remaining was stronger in M. wilsonii litter than in C. acuminata litter. The results of this study indicate that N additions retarded the nutrients release of two foliar litters. Thus, rising N deposition might favor the retention of N and P via litter decomposition in this specific area experiencing significant N deposition.

2020 ◽  
Vol 100 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Guoyong Yan ◽  
Xiongde Dong ◽  
Binbin Huang ◽  
Honglin Wang ◽  
Ziming Hong ◽  
...  

We conducted a field experiment with four levels of simulated nitrogen (N) deposition (0, 2.5, 5, and 7.5 g N m−2 yr−1, respectively) to investigate the response of litter decomposition of Pinus koraiensis (PK), Tilia amurensis (TA), and their mixture to N deposition during winter and growing seasons. Results showed that N addition significantly increased the mass loss of PK litter and significantly decreased the mass loss of TA litter throughout the 2 yr decomposition processes, which indicated that the different responses in the decomposition of different litters to N addition can be species specific, potentially attributed to different litter chemistry. The faster decomposition of PK litter with N addition occurred mainly in the winter, whereas the slower decomposition of TA litter with N addition occurred during the growing season. Moreover, N addition had a positive effect on the release of phosphorus, magnesium, and manganese for PK litter and had a negative effect on the release of carbon, iron, and lignin for TA litter. Decomposition and nutrient release from mixed litter with N addition showed a non-additive effect. The mass loss from litter in the first winter and over the entire study correlated positively with the initial concentration of cellulose, lignin, and certain nutrients in the litter, demonstrating the potential influence of different tissue chemistries.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 914
Author(s):  
Jing Geng ◽  
Shulan Cheng ◽  
Huajun Fang ◽  
Jie Pei ◽  
Meng Xu ◽  
...  

Key Findings: Combining physical fractionation and pyrolysis–gas chromatography/mass spectrometry (py-GC/MS) technique can help better understand the dynamics of soil organic matter (SOM). Background and Objectives: SOM plays a critical role in the global carbon (C) cycle. However, its complexity remains a challenge in characterizing chemical molecular composition within SOM and under nitrogen (N) deposition. Materials and Methods: Three particulate organic matter (POM) fractions within SOM and under N treatments were studied from perspectives of distributions, C contents and chemical signatures in a subtropical forest. N addition experiment was conducted with two inorganic N forms (NH4Cl and NaNO3) applied at three rates of 0, 40, 120 kg N ha−1 yr−1. Three particle-size fractions (>250 μm, 53–250 μm and <53 μm) were separated by a wet-sieving method. Py-GC/MS technique was used to differentiate between chemical composition. Results: A progressive proportion transfer of mineral-associated organic matter (MAOM) to fine POM under N treatment was found. Only C content in fine POM was sensitive to N addition. Principal component analyses (PCA) showed that the coarse POM had the largest plant-derived markers (lignins, phenols, long-chain n-alkanes, and n-alkenes). Short-chain n-alkanes and n-alkenes, benzofurans, aromatics and polycyclic aromatic hydrocarbons mainly from black carbon prevailed in the fine POM. N compounds and polysaccharides from microbial products dominated in the MAOM. Factor analysis revealed that the degradation extent of three fractions was largely distinct. The difference in chemical structure among three particulate fractions within SOM was larger than treatments between control and N addition. In terms of N treatment impact, the MAOM fraction had fewer benzofurans compounds and was enriched in polysaccharides, indicating comparatively weaker mineralization and stronger stabilization of these substances. Conclusions: Our findings highlight the importance of chemical structure in SOM pools and help to understand the influence of N deposition on SOM transformation.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 78 ◽  
Author(s):  
Hua Yu ◽  
Dongliang Cheng ◽  
Baoyin Li ◽  
Chaobin Xu ◽  
Zhongrui Zhang ◽  
...  

Research Highlights: Short-term nitrogen (N) addition did not significantly alter the effects of seasonal drought on the leaf functional traits in Machilus pauhoi Kanehira seedlings in N-rich subtropical China. Background and Objectives: Seasonal drought and N deposition are major drivers of global environmental change that affect plant growth and ecosystem function in subtropical China. However, no consensus has been reached on the interactive effects of these two drivers. Materials and Methods: We conducted a full-factorial experiment to analyze the single and combined effects of seasonal drought and short-term N addition on chemical, morphological and physiological traits of M. pauhoi seedlings. Results: Seasonal drought (40% of soil field capacity) had significant negative effects on the leaf N concentrations (LNC), phosphorus (P) concentrations (LPC), leaf thickness (LT), net photosynthetic rate (A), transpiration rate (E), stomatal conductance (Gs), and predawn leaf water potential (ψPD), and significant positive effects on the carbon:N (C:N) ratio and specific leaf area (SLA). Short-term N addition (50 kg N·hm−2·year−1 and 100 kg N·hm−2·year−1) tended to decrease the C:N ratio and enhance leaf nutrient, growth, and photosynthetic performance because of increased LNC, LPC, LT, leaf area (LA), SLA, A, E, and ψPD; however, it only had significant effects on LT and Gs. No significant interactive effects on leaf traits were detected. Seasonal drought, short-term N addition, and their interactions had significant effects on soil properties. The soil total C (STC), nitrate N (NO3−-N) and soil total N (STN) concentrations were the main factors that affected the leaf traits. Conclusions: Seasonal drought had a stronger effect on M. pauhoi seedling leaf traits than short-term N deposition, indicating that the interaction between seasonal drought and short-term N deposition may have an additive effecton M. pauhoi seedling growth in N-rich subtropical China.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhaolong Ding ◽  
Xu Liu ◽  
Lu Gong ◽  
Xin Chen ◽  
Jingjing Zhao ◽  
...  

AbstractHuman activities have increased the input of nitrogen (N) to forest ecosystems and have greatly affected litter decomposition and the soil environment. But differences in forests with different nitrogen deposition backgrounds. To better understand the response of litter decomposition and soil environment of N-limited forest to nitrogen deposition. We established an in situ experiment to simulate the effects of N deposition on soil and litter ecosystem processes in a Picea schrenkiana forest in the Tianshan Mountains, China. This study included four N treatments: control (no N addition), low N addition (LN: 5 kg N ha−1 a−1), medium N addition (MN: 10 kg N ha−1 a−1) and high N addition (HN: 20 kg N ha−1 a−1). Our results showed that N addition had a significant effect on litter decomposition and the soil environment. Litter mass loss in the LN treatment and in the MN treatment was significantly higher than that in the control treatment. In contrast, the amount of litter lost in the HN treatment was significantly lower than the other treatments. N application inhibited the degradation of lignin but promoted the breakdown of cellulose. The carbon (C), N, and phosphorus (P) contents of litter did not differ significantly among the treatments, but LN promoted the release of C and P. Our results also showed that soil pH decreased with increasing nitrogen application rates, while soil enzyme activity showed the opposite trend. In addition, the results of redundancy analysis (RDA) and correlation analyses showed that the soil environment was closely related to litter decomposition. Soil enzymes had a positive effect on litter decomposition rates, and N addition amplified these correlations. Our study confirmed that N application had effects on litter decomposition and the soil environment in a N-limited P. schrenkiana forest. LN had a strong positive effect on litter decomposition and the soil environment, while HN was significantly negative. Therefore, increased N deposition may have a negative effect on material cycling of similar forest ecosystems in the near future.


2019 ◽  
Vol 16 (14) ◽  
pp. 2891-2904
Author(s):  
Tianpeng Li ◽  
Heyong Liu ◽  
Ruzhen Wang ◽  
Xiao-Tao Lü ◽  
Junjie Yang ◽  
...  

Abstract. Sulfur (S) availability plays a vital role in driving functions of terrestrial ecosystems, which can be largely affected by soil inorganic S fractions and pool size. Enhanced nitrogen (N) input can significantly affect soil S availability, but it still remains largely unknown if the N effect varies with frequency of N addition and mowing management in grasslands. To investigate changes in the soil S pool and inorganic S fractions (soluble S, adsorbed S, available S, and insoluble S), we conducted a field experiment with different frequencies (two times per year vs. monthly additions per year) and intensities (i.e., 0, 1, 2, 3, 5, 10, 15, 20, and 50 g N m−2 yr−1) of NH4NO3 addition and mowing (unmown vs. mown) over 6 years in a temperate grassland of northern China. Generally, N addition frequency, N intensity, and mowing significantly interacted with each other to affect most of the inorganic S fractions. Specifically, a significant increase in soluble S was only found at high N frequency with the increasing intensity of N addition. Increasing N addition intensity enhanced adsorbed S and available S concentrations at low N frequency in unmown plots; however, both fractions were significantly increased with N intensity at both N frequencies in mown plots. The high frequency of N addition increased the concentrations of adsorbed S and available S in comparison to the low frequency of N addition only in mown plots. Changes in soil S fractions were mainly related to soil pH, N availability, soil organic carbon (SOC), and plant S uptake. Our results suggested that N input could temporarily replenish soil-available S by promoting dissolution of soil-insoluble S with decreasing soil pH and mineralization of organic S due to increasing plant S uptake. However, the significant decrease in organic S and total S concentrations with N addition intensity in mown plots indicated that N addition together with biomass removal would eventually cause soil S depletion in this temperate grassland in the long term. Our results further indicated that using large and infrequent N additions to simulate N deposition can overestimate the main effects of N deposition and mowing management on soil S availability in semiarid grasslands.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Shu Liao ◽  
Siyi Tan ◽  
Yan Peng ◽  
Dingyi Wang ◽  
Xiangyin Ni ◽  
...  

Abstract Background China’s terrestrial ecosystems have been receiving increasing amounts of reactive nitrogen (N) over recent decades. External N inputs profoundly change microbially mediated soil carbon (C) dynamics, but how elevated N affects the soil organic C that is derived from microbial residues is not fully understood. Here, we evaluated the changes in soil microbial necromass C under N addition at 11 forest, grassland, and cropland sites over China’s terrestrial ecosystems through a meta-analysis based on available data from published articles. Results Microbial necromass C accounted for an average of 49.5% of the total soil organic C across the studied sites, with higher values observed in croplands (53.0%) and lower values in forests (38.6%). Microbial necromass C was significantly increased by 9.5% after N addition, regardless of N forms, with greater stimulation observed for fungal (+ 11.2%) than bacterial (+ 4.5%) necromass C. This increase in microbial necromass C under elevated N was greater under longer experimental periods but showed little variation among different N application rates. The stimulation of soil microbial necromass C under elevated N was proportional to the change in soil organic C. Conclusions The stimulation of microbial residues after biomass turnover is an important pathway for the observed increase in soil organic C under N deposition across China’s terrestrial ecosystems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mauro Lo Cascio ◽  
Lourdes Morillas ◽  
Raúl Ochoa-Hueso ◽  
Manuel Delgado-Baquerizo ◽  
Silvana Munzi ◽  
...  

Atmospheric nitrogen (N) inputs in the Mediterranean Basin are projected to increase due to fossil fuel combustion, fertilizer use, and the exacerbation of agricultural production processes. Although increasing N deposition is recognized as a major threat to ecosystem functioning, little is known about how local environmental conditions modulate ecosystem function response to N addition, particularly in the context of Mediterranean-Basin ecosystems. Here, we assess how N addition affects important ecosystem properties associated with litter decomposition, soil physical-chemical properties, soil extracellular enzymatic activity and microbial abundance across three long-term N addition experimental sites in the Mediterranean Basin. Sites were located in El Regajal (Madrid, Spain), Capo Caccia (Alghero, Italy), and Arrábida (Lisbon, Portugal) and are all representative of Mediterranean shrublands. No common pattern for litter decomposition process or other studied variables emerged among the control plots of the studied sites. Nitrogen supply only affected soil pH, a major driver of decomposition, in two out of three experimental sites. Moreover, when we explored the role of N addition and soil pH in controlling litter decay, we found that the effects of these factors were site-dependent. Our results point out to local ecosystem features modulating N addition effects in controlling litter decomposition rates in Mediterranean ecosystems, suggesting that the responses of soil functioning to N deposition are site-dependent. These findings provide further knowledge to understand contrasting ecosystem responses to N additions based on a single field experiments.


2013 ◽  
Vol 10 (1) ◽  
pp. 1451-1481 ◽  
Author(s):  
X. Lu ◽  
F. S. Gilliam ◽  
G. Yu ◽  
L. Li ◽  
Q. Mao ◽  
...  

Abstract. Dissolved organic carbon (DOC) plays a critical role in the carbon (C) cycle of forest soils, and has been recently connected with global increases in nitrogen (N) deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils) in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption) rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.


2019 ◽  
Author(s):  
Enzai Du ◽  
Nan Xia ◽  
Wim de Vries

Abstract. Anthropogenic alteration of global nitrogen (N) deposition has resulted in profound impacts on soil fluxes of greenhouse gases in terrestrial ecosystems. However, the response of soil methane (CH4) flux to N deposition remains poorly quantified in global forest. Based on a synthesis of experimental results from literature, we evaluated the effects of N deposition on growing-season soil CH4 flux across forest biomes. A distinction was made between low-level N addition that is comparable with the worldwide range in N deposition ( 60 kg N−1 yr−1. The results showed that growing-season soil CH4 flux was significantly affected by N additions, the value being dependent on the N addition level and forest biome. Low-level N addition significantly increased growing-season soil CH4 uptake in boreal forest, while an opposite effect occurred in temperate and subtropical forests. However, high-level N addition significantly decreased growing-season soil CH4 uptake across boreal, temperate, and subtropical forests. At biome scale, current N deposition was estimate to increase growing-season soil CH4 sink by 0.029 Tg CH4 in boreal forest, while it decreased growing-season soil CH4 sink by 0.025 Tg CH4 and 0.051 Tg CH4 in temperate and subtropical forests, respectively. This work improves our understanding of biome-specific effect of N deposition on soil CH4 uptake and identifies knowledge gaps in the effect of N deposition on soil CH4 flux in tropical forest.


2013 ◽  
Vol 10 (6) ◽  
pp. 3931-3941 ◽  
Author(s):  
X. Lu ◽  
F. S. Gilliam ◽  
G. Yu ◽  
L. Li ◽  
Q. Mao ◽  
...  

Abstract. Dissolved organic carbon (DOC) plays a critical role in the carbon (C) cycle of forest soils, and has been recently connected with global increases in nitrogen (N) deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils) in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption) rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.


Sign in / Sign up

Export Citation Format

Share Document