A dansyl group modified SBA-15 INHIBIT logic gate with [Hg2+ and Cl−] or [Hg2+ and Br−] as inputs

2013 ◽  
Vol 277 ◽  
pp. 257-262 ◽  
Author(s):  
Xiaoyu Wang ◽  
Honglei Yang
Keyword(s):  
1997 ◽  
Vol 7 (3) ◽  
pp. 739-748
Author(s):  
H. Gualous ◽  
A. Koster ◽  
D. Pascal ◽  
S. Laval

2020 ◽  
Vol E103.C (10) ◽  
pp. 547-549
Author(s):  
Yoshinao MIZUGAKI ◽  
Koki YAMAZAKI ◽  
Hiroshi SHIMADA

2019 ◽  
Author(s):  
Adam Eördögh ◽  
Carolina Paganini ◽  
Dorothea Pinotsi ◽  
Paolo Arosio ◽  
Pablo Rivera-Fuentes

<div>Photoactivatable dyes enable single-molecule imaging in biology. Despite progress in the development of new fluorophores and labeling strategies, many cellular compartments remain difficult to image beyond the limit of diffraction in living cells. For example, lipid droplets, which are organelles that contain mostly neutral lipids, have eluded single-molecule imaging. To visualize these challenging subcellular targets, it is necessary to develop new fluorescent molecular devices beyond simple on/off switches. Here, we report a fluorogenic molecular logic gate that can be used to image single molecules associated with lipid droplets with excellent specificity. This probe requires the subsequent action of light, a lipophilic environment and a competent nucleophile to produce a fluorescent product. The combination of these requirements results in a probe that can be used to image the boundary of lipid droplets in three dimensions with resolutions beyond the limit of diffraction. Moreover, this probe enables single-molecule tracking of lipids within and between droplets in living cells.</div>


2017 ◽  
Vol 184 (8) ◽  
pp. 2505-2513 ◽  
Author(s):  
Xiaoting Ji ◽  
Haoyuan Lv ◽  
Minghui Ma ◽  
Binglin Lv ◽  
Caifeng Ding

2021 ◽  
Vol 113 ◽  
pp. 110855
Author(s):  
Lei Zhang ◽  
Yuanhe Sun ◽  
Zhenjiang Li ◽  
Lin Wang ◽  
Shuqi Cao ◽  
...  

Author(s):  
Trinity Jackson ◽  
Rachel Fitzgerald ◽  
Daniel K. Miller ◽  
Emil F. Khisamutdinov
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 33
Author(s):  
Han Yan ◽  
Zhen Zhang ◽  
Ting Weng ◽  
Libo Zhu ◽  
Pang Zhang ◽  
...  

Nanopores have a unique advantage for detecting biomolecules in a label-free fashion, such as DNA that can be synthesized into specific structures to perform computations. This method has been considered for the detection of diseased molecules. Here, we propose a novel marker molecule detection method based on DNA logic gate by deciphering a variable DNA tetrahedron structure using a nanopore. We designed two types of probes containing a tetrahedron and a single-strand DNA tail which paired with different parts of the target molecule. In the presence of the target, the two probes formed a double tetrahedron structure. As translocation of the single and the double tetrahedron structures under bias voltage produced different blockage signals, the events could be assigned into four different operations, i.e., (0, 0), (0, 1), (1, 0), (1, 1), according to the predefined structure by logic gate. The pattern signal produced by the AND operation is obviously different from the signal of the other three operations. This pattern recognition method has been differentiated from simple detection methods based on DNA self-assembly and nanopore technologies.


Sign in / Sign up

Export Citation Format

Share Document