Laser cleaning of sulfide scale on compressor impeller blade

2015 ◽  
Vol 355 ◽  
pp. 334-340 ◽  
Author(s):  
Q.H. Tang ◽  
D. Zhou ◽  
Y.L. Wang ◽  
G.F. Liu
2019 ◽  
Vol 9 (16) ◽  
pp. 3416 ◽  
Author(s):  
T R Jebieshia ◽  
Senthil Kumar Raman ◽  
Heuy Dong Kim

The present study focuses on the aerodynamic performance and structural analysis of the centrifugal compressor impeller. The performance characteristics of the impeller are analyzed with and without splitter blades by varying the total number of main and splitter blades. The operating conditions of the compressor under centrifugal force and pressure load from the aerodynamic analysis are applied to the impeller blade and hub to perform the one-way Fluid–Structure Interaction (FSI). For the stress assessment, maximum equivalent von Mises stresses in the impeller blades are compared with the maximum allowable stress of the impeller material. The effects of varying the pressure field on the deformation and stress of the impeller are also calculated. The aerodynamic and structural performance of the centrifugal compressor at 73,000 rpm are investigated in terms of the efficiency, pressure ratio, equivalent von Mises stress, and total deformation of the impeller.


Author(s):  
Alexander O. Pugachev ◽  
Alexander V. Sheremetyev ◽  
Viktor V. Tykhomirov ◽  
Alexey V. Petrov

This paper describes a theoretical approach to shift individual natural frequencies of centrifugal compressor impeller blades. The approach applies sizing optimization of blade’s geometry using a gradient-based optimization method. Calculation of gradients is carried out by the finite-difference method. A new centrifugal compressor blade profile generator incorporating a blade parametrization procedure is developed. The blade’s geometry is parametrized using intuitive geometric parameters. Five design parameters related to the length of the sectional profile generator line, profile thicknesses and rotation angles at hub and shroud are defined for each of the blade sectional profiles. In addition, two global design parameters are defined to control rigid rotation of the blade hub and shroud sections in circumferential direction. Four nonlinear optimization problems containing multiple frequency constraints and constraints on the static equivalent stresses are considered. The optimization aims are either shifting a particular natural frequency of a blade or minimization of blade’s mass. For instance, one of the considered optimization problems is to decrease the 1st natural frequency of an impeller blade by 5%, while the 2nd and the 3rd natural frequencies must be simultaneously increased by 5%. The analysis is applied to the centrifugal compressor of a small-size turboprop engine. A three-dimensional finite element model of the impeller blade is developed in ANSYS Mechanical software package to perform static and modal analyses. The results of the optimization show that the code can meet defined objectives and constraints with reasonable accuracy. A detailed comparison of optimized profiles with the baseline geometry is provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Soo-Yong Cho ◽  
Kook-Young Ahn ◽  
Young-Duk Lee ◽  
Young-Cheol Kim

An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN) was adopted. Initially, the design of experiments was applied to set up the initial data space of the ANN, which was improved during the optimization process using a genetic algorithm. If a result of the ANN reached a higher level, that result was re-calculated by computational fluid dynamics (CFD) and was applied to develop a new ANN. The prediction difference between the ANN and CFD was consequently less than 1% after the 6th generation. Using this optimization technique, the computational time for the optimization was greatly reduced and the accuracy of the optimization algorithm was increased. The efficiency was improved by 1.4% without losing the pressure ratio, and Pareto-optimal solutions of the efficiency versus the pressure ratio were obtained through the 21st generation.


1975 ◽  
Vol 97 (3) ◽  
pp. 337-345 ◽  
Author(s):  
D. Eckardt

One of the critical problems in centrifugal compressor design is the diffuser-impeller interaction. Up to now, theoretical models, which describe one of the salient features of this problem, the impeller discharge mixing process, appear to be proved experimentally only at low tip speeds. In the present study investigations on this subject were accomplished in the vaneless diffuser of a low-pressure ratio centrifugal compressor, running at tip speeds of 300 m/s. Detailed, instantaneous measurements in the impeller discharge mixing zone were performed by high-frequency measuring systems. Relative velocity distributions at the exit of impeller blade channels show pronounced jet/wake-patterns. The radial extension of flow distortions in the vaneless diffuser entry region, caused by rotating wakes, reached up to higher radius ratios than predicted by theoretical models.


Author(s):  
Song Li ◽  
Xinle Yang ◽  
Weikang Li ◽  
Meiling Tang

Studies show that operating stress and natural frequency of the turbocharger impeller are two key parameters that affect the service life of the turbocharger. In this regard, NREC and ANSYS software are utilized in the present study to design impellers and calculate the impeller stress, natural frequency, and the inertia moment of the impeller for each baseline impeller and their modifications. Furthermore, modal tests are carried out to verify the simulation results. Finally, the compressor characteristic maps before and after the blade gradient angle optimization are compared. Obtained results show that compared with the cantilever length, the blade thickness has a remarkable influence on the blade gradient angle. Moreover, it is found that the correlation between the blade gradient angle and the first-order frequency multiplication ratio is linear. As the blade gradient angle increases, the maximum stress at the blade root of the compressor initially decreases and then increases. The value of the blade gradient angle varies within the range of 2.288°–3.955°. Moreover, the closer the gradient angle to 3.26°, the smaller the maximum equivalent stress of the impeller, and the higher the impeller strength. The greater the thickness of the blade, the longer the cantilever length of the impeller, and the greater the inertia moment. Optimizing the blade gradient angle can improve the efficiency of the compressor without changing the pressure ratio and flow rate. It should be indicated that error between the results from the simulation and the experiment is within the range 1.736%–1.254%. Therefore, the calculation results are reliable. It is concluded that the regular pattern of the blade gradient angle affects the compressor impeller stress and its natural frequency. The present article is expected to provide a helpful theoretical basis for designing an optimized compressor impeller.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Piotr Świder ◽  
Zbigniew Kozanecki Jr ◽  
Marek Graczykowski ◽  
Władysław Kryłłowicz

AbstractThis paper describes several modernization aspects of the process 8 MW air compressor and its driver. The main aim of the revamp was to increase internal efficiencies of both the compressor and turbine and increase the load of the compressor without additional power consumption. The original pressure ratio was preserved. To meet these requirements a redesign of the flow path of both machineswas necessary.Moreover, the turbineworking conditions were changed from extraction-condensing to condensing. In terms of compressor, impeller blade redesign, adaptation of diffusers and Abradable seals were a part of the scope. The revamp was completed in April 2014 with all the requirements met. This paper covers the general outline and a comparison of the original and modernized machine operating parameters, design and technical assumptions and also describes some problematic issues which occurred during the realization of the project.


Author(s):  
T. R. Jebieshia ◽  
S. K. Raman ◽  
H. D. Kim

Abstract The present study focuses on the aerodynamic performance and structural analysis of the centrifugal compressor impeller. Performance characteristics of the impeller are analyzed with and without splitter blades by varying the total number of main and splitter blades. The operating conditions of the compressor under centrifugal force and pressure load from the aerodynamic analysis were applied to the impeller blade and hub to perform the one-way Fluid-Structure Interaction (FSI). For the stress assessment, maximum equivalent von-Mises stresses in the impeller blades are compared with the maximum allowable stress of the impeller material. The effects of varying pressure field on the deformation and stress of the impeller is also calculated. The aerodynamic and structural performance of the centrifugal compressor at 73000 rpm are investigated in terms of the efficiency, pressure ratio, equivalent von-Mises stress, and total deformation of the impeller.


Author(s):  
Daniel J. Dorney ◽  
Roger L. Davis

A three-dimensional, Navier-Stokes analysis is presented for the prediction of viscous flows through centrifugal impellers. Based on the Navier-Stokes rotor/stator interaction procedure developed by Rai, the present analysis uses a zonal grid methodology to discretize the impeller flow field and to facilitate the relative motion of the impeller. A blade surface oriented O-grid generated from an elliptic partial differential equation solution procedure is patched into an algebraically generated H-grid which is used to discretize the inlet, exit and blade-to-blade regions. The equations of motion are integrated using a spatially third-order accurate, implicit, iterative, upwind, finite difference, time-marching technique. Predicted results are presented for flow through a low speed centrifugal compressor impeller operating at design flow conditions. Comparison of these predicted results with experimental data demonstrates the capability of this procedure to predict impeller blade loading and provide insight into the secondary flow structure within the impeller blade passage.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
B. Mischo ◽  
P. Jenny ◽  
Y. Bidaut ◽  
N. Fonzi ◽  
D. Hermann ◽  
...  

Abstract Unshrouded industrial centrifugal compressor impellers operate at high rotational speeds and volume flow rates. Under such conditions, impeller blade excitation is dominated by high frequency interaction with stationary parts, i.e., vaned diffusers or inlet guide vanes. In a previous study conducted on two full compression units of the original equipment manufacturer (OEM), the authors identified, characterized, and quantified resonant blade vibration caused by the interaction of the impeller blades with rotating stall cells during severe off-design conditions. This caused significant dynamic stress in the blades. In a follow-up study, this phenomenon was reproduced successfully experimentally under representative off-design conditions in a downscaled test rig and numerically with unsteady computational fluid dynamics (CFD) and structural mechanical finite element method (FEM) analysis. The gained knowledge was translated into a new diffuser design philosophy, based on sectorwise circumferential variation of the leading edge angle. This paper presents the patented philosophy, which is experimentally verified on the same test rig configuration in terms of flow path geometry and measurement equipment that was used in the mentioned prior study to assess resonant blade interaction. The results confirm the design aims: rotating stall onset was delayed without affecting the aerodynamic performance of the stage. Resonant blade interaction with rotating stall observed in the baseline diffuser could not be avoided with the two new diffuser designs. However, with the two new diffusers, the induced mechanical stresses in the impeller and the excitability were reduced by up to 12%.


Author(s):  
B. Mischo ◽  
P. Jenny ◽  
Y. Bidaut ◽  
N. Fonzi ◽  
D. Hermann ◽  
...  

Abstract Unshrouded industrial centrifugal compressor impellers operate at high rotational speeds and volume flow rates. Under such conditions impeller blade excitation is dominated by high frequency interaction with stationary parts, i.e. vaned diffusers or inlet guide vanes. In a previous study conducted on two full compression units of the original equipment manufacturer (OEM), the authors also identified, characterized and quantified resonant blade vibration caused by the interaction of the impeller blades with sub-synchronous rotating stall cells during severe off-design conditions. The resonant impeller excitation lead to significant dynamic stress in the blades. In a follow-up study the authors have reproduced this phenomenon under representative off-design conditions in a downscaled test rig and successfully reproduced the phenomenon with unsteady Computational Fluid Dynamics (CFD) and structural mechanical Finite Element Method (FEM) analysis. The gained knowledge of these studies was translated into a new diffuser design philosophy, based on a sectorwise circumferential variation of the leading edge angle. In this paper, the patented philosophy by the OEM is presented and verified experimentally on the same test rig configuration in terms of flow path geometry and measurement equipment that was used in the mentioned prior study to assess resonant blade interaction. The results confirm the design aims: rotating stall onset was delayed without affecting the aerodynamic performance of the stage. Resonant blade interaction with rotating stall observed in the baseline diffuser could not be avoided with the two new diffuser designs. However, with the two new diffusers, the induced mechanical stresses in the impeller and the excitability were reduced by up to 12%.


Sign in / Sign up

Export Citation Format

Share Document