Surface chemical composition analysis of heat-treated bamboo

2016 ◽  
Vol 371 ◽  
pp. 383-390 ◽  
Author(s):  
Fan-dan Meng ◽  
Yang-lun Yu ◽  
Ya-mei Zhang ◽  
Wen-ji Yu ◽  
Jian-min Gao
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 379
Author(s):  
Da Qing Yu ◽  
Xiao Jing Han ◽  
Ting Yu Shan ◽  
Rui Xu ◽  
Jin Hu ◽  
...  

The authors would like to correct an error in the title paper [...]


1998 ◽  
Vol 11 (1) ◽  
pp. 439-440
Author(s):  
T. Tsuji ◽  
K. Ohnaka ◽  
W. Aoki ◽  
H.R.A. Jones

Spectra of M dwarfs are rich in atomic and molecular lines. These spectra provide such basic information as Teff (or radius), log g (or mass), surface chemical composition, and something more (e.g. activity) if properly interpreted. It is recognized, however, that spectra of M dwarfs are already dimmed by the dust formed in their photospheres (Tsuji et al. 1996a) and this effect, which has been overlooked until recently, should be taken into account in any interpretation and analysis of the spectra of very low mass objects (VLMOs) including late M dwarfs and brown dwarfs.


2021 ◽  
Vol 156 ◽  
pp. 105112
Author(s):  
Samin Fathalinejad ◽  
Esben Taarning ◽  
Peter Christensen ◽  
Jan H. Christensen

2002 ◽  
Vol 20 (7) ◽  
pp. 619-632 ◽  
Author(s):  
A.A. Ali ◽  
F.A. Al-Sagheer ◽  
M.I. Zaki

Three different modifications of manganese(IV) oxide, viz. cryptomelane, nsutite and todorokite-like, were synthesized by hydrothermal methods. The bulk chemical composition, phase composition, crystalline structure and particle morphology of the resulting materials were determined by thermogravimetry, atomic absorption spectroscopy, X-ray diffractometry, infrared spectroscopy and scanning electron microscopy. The surface chemical composition, texture and structure were assessed using X-ray photoelectron microscopy, nitrogen sorptiometry and high-resolution electron microscopy. The results highlighted the hydrothermal conditions under which such tunnel-structured modifications of manganese(IV) oxide can be successfully synthesized. Moreover, they revealed that (i) the bulk was microcrystalline, (ii) the crystallites were either fibrils (cryptomelane and nsutite) or rod-like (todorokite) with low-index exposed facets, (iii) the surface chemical composition mostly reflected that of the bulk and (iv) the surface texture was linked with high specific areas, slit-shaped mesopores associated with particle interstices and micropores which allowed surface accessibility to the bulk tunnels of the test oxides. The application of such test oxides as shape-selective oxidation catalysts appears worthy of investigation.


2010 ◽  
Vol 158 ◽  
pp. 197-203 ◽  
Author(s):  
Jie Liu ◽  
Yue Xin Han ◽  
Wan Zhong Yin

The process mineralogy of potassium-rich shale from Chaoyang of Liaoning, China, was studied. Research results showed there are much less variety and smaller quantities in mineral compositions. Calculated mineral composition by means of chemical composition analysis combined with XRD, MLA, IR and TG-DSC analyses showed that main minerals with were Potassium-feldspar, muscovite, biotite and illite, and gangue minerals were quartz and small amounts of hematite. Potassium-rich minerals such as potassium-feldspar and muscovite contact smoothly with quartz respectively, and there was the direction arrangement among potassium-feldspar, quartz and muscovite in the shale. And quartz and hematite were main cement in the shale. The influences of the research results on the potassium extraction from potassium-rich shale were distinct.


2007 ◽  
Vol 23 ◽  
pp. 283-386
Author(s):  
Mariana Lucaci ◽  
Radu L. Orban ◽  
M. Lazarescu ◽  
Stefania Gavriliu ◽  
Magdalena Lungu ◽  
...  

Directional solidification techniques have been applied to produce Ni based intermetallic alloys with preferentially oriented columnar crystals extended along the complete length and parallel to the solidification direction. Enhanced ductility is expected from such alloys. In this paper we present the research results concerning the application of this technique to some complex Ni3Al- Fe-B alloys obtained from compacted mixtures of elemental powders. The corresponding master alloys have been obtained in a vacuum induction furnace by the known Exo-Melt process [1]. The directional solidification of these alloys was subsequently performed on cylindrical samples, at two solidification rates, 30 and 15 mm/h. The influence of the rate and composition used on the dimensional variations, densities, microstructure, constituent phases and lattice parameters, as well as on the surface chemical composition have been documented and are presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document