Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

2016 ◽  
Vol 387 ◽  
pp. 163-174 ◽  
Author(s):  
Marcin Przybylak ◽  
Hieronim Maciejewski ◽  
Agnieszka Dutkiewicz
2008 ◽  
Vol 15 (06) ◽  
pp. 833-839 ◽  
Author(s):  
CHAOXIA WANG ◽  
MAO LI ◽  
MIN WU ◽  
LI CHEN

The properties of the cotton fabric with water-repellence finishing by sol method with the hexadecyltrimethoxysilane as additive were observed. The cotton fabrics were immersed in the prepared sols with double dip and double nip dried at 90°C, annealed at 160°C for 3 min. The water repellence and the physical properties such as gas permeability, bending properties, beetling properties, tensile strength, elongation at break, abrasion resistance, and anti-crease properties of the cotton fabrics were investigated. The results showed that anti-crease and tensile strength were improved. However, the abrasion resistance of the cotton fabrics decreased in some way. Both the bending and beetling properties measurement proved that the handle of the treated cotton fabrics changed stiffness. For the dyed fabrics by the water-repellent finishing, the hue was slightly changed, the deeper color was achieved. There is no adverse effect for treated fabric by water-repellent finishing on the fastness.


2016 ◽  
Vol 28 (3) ◽  
pp. 319-327 ◽  
Author(s):  
Aysun Aksit ◽  
Nurhan Onar ◽  
Bengi Kutlu ◽  
Evren Sergin ◽  
Ismail Yakin

Purpose – The purpose of this paper is to develop the flame retardancy properties of cotton fabrics with treatment of phosphorus and nitrogen containing silane-based nanosol by sol-gel process. Design/methodology/approach – Nanosols containing tetraethoxysilane or (3-aminopropyl) triethoxysilane as precursors, (3-glycidyloxypropyl) trimethoxysilane as cross-linking agent and guanidine phosphate monobasic as flame retarding agent were impregnated on cotton fabrics. Flame retardancy properties of the fabric samples were determined by limited flame spread test and limited oxygen index (LOI) test. In addition, microstructural and surface morphological properties of the fabric samples were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. Findings – Depending on the limited flame spread test, the authors show that the coated fabric samples gain flame retardancy properties and the LOI value of the samples increased as to 45.7 per cent by the synergistic effect of phosphorus-nitrogen-silicon. Originality/value – There have some studies in flame retardancy behaviour of textiles. In this study, flame retardant cotton fabric with very low weight in grams was improved by sol-gel process. Moreover, ecological process was provided thanks to using halogen-free flame retardant.


RSC Advances ◽  
2015 ◽  
Vol 5 (14) ◽  
pp. 10647-10655 ◽  
Author(s):  
Xin Wang ◽  
Manuel Quintero Romero ◽  
Xiu-Qin Zhang ◽  
Rui Wang ◽  
De-Yi Wang

A new intumescent coating is layer-by-layer deposited on cotton, leading to fire being extinguished after ignition on the fabric during vertical fire testing.


2020 ◽  
Vol 1 (4) ◽  
pp. 918-925 ◽  
Author(s):  
Aicha Boukhriss ◽  
Mohamed El messoudi ◽  
Jean-Philippe Roblin ◽  
Tarik Aaboub ◽  
Damien Boyer ◽  
...  

Luminescent hybrid materials which contain fluorene and stilbene based fluorophores were coated onto cotton fabrics to design textile-based pH sensors.


2006 ◽  
Vol 920 ◽  
Author(s):  
Kaihong Qi ◽  
Walid A Daoud ◽  
John Xin ◽  
C.L. Mak

AbstractNanocrystalline anatase titanium dioxide films were successfully produced on cotton fabrics from alkoxide solutions under ambient pressure using the low temperature sol-gel process. At a temperature as low as 40°C, only anatase phase formed from X-ray diffraction spectroscopy (XRD). Field scanning electron microscopy (FESEM) images show the formation of uniform continuous films of titanium dioxide on cotton fabrics. The self-cleaning properties of these fabrics were evaluated by measuring anti-bacterial activities and the decomposition of a colorant Neolan Blue 2G. The results indicated that anatase treated cotton fabrics exhibited good self-cleaning performance.


2008 ◽  
Vol 109 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Aysun Cireli Aķ⋅it ◽  
Nurhan Onar

Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Sign in / Sign up

Export Citation Format

Share Document