Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

2017 ◽  
Vol 404 ◽  
pp. 1-6 ◽  
Author(s):  
Xianqing Liang ◽  
Deyou Pan ◽  
Ming Lao ◽  
Shuiying Liang ◽  
Dan Huang ◽  
...  
2007 ◽  
Vol 561-565 ◽  
pp. 2099-2102 ◽  
Author(s):  
Chung Kwei Lin ◽  
Chin Yi Chen ◽  
Pee Yew Lee ◽  
Chih Chieh Chan

In the present study, pure elemental powders of Fe and S were mixed to give the desired compositions of Fe50S50. A SPEX 8000D high-energy ball mill was used to synthesize iron sulfide powders under an Ar-filled atmosphere. The prepared powders were examined by conventional X-ray diffractometry and synchrotron X-ray absorption spectroscopy. The experimental results revealed that mechanochemical reactions occurred during the ball milling process for all the compositions. The Fe50S50 phase was obtained after ball milling for 20 h. Extended X-ray absorption fine structure (EXAFS) results revealed that the nearest neighbor bond lengths of the radial distribution function (RDF) for iron decreased when iron sulfides formed. X-ray absorption near edge structure (XANES) of S K-edges distinguished better the structural evolution of these iron sulfides.


2019 ◽  
Vol 4 (2) ◽  
pp. 41 ◽  
Author(s):  
Macis ◽  
Rezvani ◽  
Davoli ◽  
Cibin ◽  
Spataro ◽  
...  

Structural changes of MoO3 thin films deposited on thick copper substrates upon annealing at different temperatures were investigated via ex situ X-Ray Absorption Spectroscopy (XAS). From the analysis of the X-ray Absorption Near-Edge Structure (XANES) pre-edge and Extended X-ray Absorption Fine Structure (EXAFS), we show the dynamics of the structural order and of the valence state. As-deposited films were mainly disordered, and ordering phenomena did not occur for annealing temperatures up to 300 °C. At ~350 °C, a dominant α-MoO3 crystalline phase started to emerge, and XAS spectra ruled out the formation of a molybdenum dioxide phase. A further increase of the annealing temperature to ~500 °C resulted in a complex phase transformation with a concurrent reduction of Mo6+ ions to Mo4+. These original results suggest the possibility of using MoO3 as a hard, protective, transparent, and conductive material in different technologies, such as accelerating copper-based devices, to reduce damage at high gradients.


2007 ◽  
Vol 7 (11) ◽  
pp. 3867-3871
Author(s):  
Seung-Min Paek ◽  
Won-Young Jo ◽  
Man Park ◽  
Jin-Ho Choy

Solid transchelation reaction was established for the synthesis of bis(N-oxopyridine-2-thionato) zinc (II), commonly known as zinc pyrithione (ZPT), to control particle size using zinc basic salt (ZBS) and aqueous sodium pyrithione solution. Distinguished from ZPT particles prepared by usual precipitation reaction, the obtained ZPT nanoparticles exhibited very narrow size distribution. X-ray absorption spectroscopy (XAS) at Zn K-edge was systematically examined to elucidate time-dependent local structural evolution during solid transchelation reaction. X-ray absorption near edge structure (XANES) analysis clearly revealed that local environment around zinc atoms transformed into pentahedron as reaction proceeded. Based on quantitative X-ray diffraction and XANES analysis, we made structural models. Theoretical XAS spectrum calculated with FEFF code could reproduce experimental one, suggesting that XAS analysis could be very powerful tool to probe phase transformation. Furthermore, according to extended X-ray absorption fine structure (EXAFS) fitting results, Zn-O distance in reaction products gradually increased from 1.96 to 2.07 Å, suggesting that zinc atoms bounded with oxygen ones in ZBS were transchelated with pyrithione ligands. This study could be a strong evidence for the usefulness of XAS to study time-dependent structural transformation of nanocrystalline materials.


2014 ◽  
Vol 70 (a1) ◽  
pp. C234-C234
Author(s):  
Brendan Kennedy ◽  
Peter Blanchard ◽  
Emily Reynolds ◽  
Zhaoming Zhang

We have studied the long-range average and local structures in a number of zirconium containing materials of the type A2B2O7 ( A = Ln or Y; B = Zr, Hf or Sn) using synchrotron X-ray and neutron powder diffraction and X-ray absorption spectroscopy. Studies of the system Gd2-xTbxZr2O7 include neutron diffraction data, obtained at λ ≍ 0.497 Å to minimise absorption, not only provide evidence for independent ordering of the anion and cation sublattices, but also suggest that the disorder transition across the pyrochlore-defect fluorite boundary of Ln2Zr2O7 is rather gradual. In general we observe that while the diffraction data indicate a clear phase transition from ordered pyrochlore to disordered defect-fluorite at specific compositions corresponding to a critical ionic radius ratio of the A and B cations (rA/rB) x ~ 1.0-1.2, X-ray absorption near-edge structure (XANES) results reveal a gradual structural evolution across the compositional range. These findings provide experimental evidence that the local disorder occurs long before the pyrochlore to defect-fluorite phase boundary as determined by X-ray diffraction, and the extent of disorder continues to develop throughout the defect-fluorite region. Where possible the experimental results were supplemented by ab initio atomic scale simulations, which provide a mechanism for disorder to initiate in the pyrochlore structure. Further, the coordination numbers of the cations in both the defect-fluorite and pyrochlore structures were predicted, and the trends agree well with the experimental XANES results. X-ray absorption measurements at the Zr L3-edge, which showed a gradual increase in the effective coordination number of the Zr from near 6-coordinate in the pyrochlore rich samples to near 7-coordinate in the defect fluorites.


Author(s):  
H. Ade ◽  
B. Hsiao ◽  
G. Mitchell ◽  
E. Rightor ◽  
A. P. Smith ◽  
...  

We have used the Scanning Transmission X-ray Microscope at beamline X1A (X1-STXM) at Brookhaven National Laboratory (BNL) to acquire high resolution, chemical and orientation sensitive images of polymeric samples as well as point spectra from 0.1 μm areas. This sensitivity is achieved by exploiting the X-ray Absorption Near Edge Structure (XANES) of the carbon K edge. One of the most illustrative example of the chemical sensitivity achievable is provided by images of a polycarbonate/pol(ethylene terephthalate) (70/30 PC/PET) blend. Contrast reversal at high overall contrast is observed between images acquired at 285.36 and 285.69 eV (Fig. 1). Contrast in these images is achieved by exploring subtle differences between resonances associated with the π bonds (sp hybridization) of the aromatic groups of each polymer. PET has a split peak associated with these aromatic groups, due to the proximity of its carbonyl groups to its aromatic rings, whereas PC has only a single peak.


2016 ◽  
Vol 88 (7) ◽  
pp. 3826-3835 ◽  
Author(s):  
Bernhard Hesse ◽  
Murielle Salome ◽  
Hiram Castillo-Michel ◽  
Marine Cotte ◽  
Barbara Fayard ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yiming Chen ◽  
Chi Chen ◽  
Chen Zheng ◽  
Shyam Dwaraknath ◽  
Matthew K. Horton ◽  
...  

AbstractThe L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.


Sign in / Sign up

Export Citation Format

Share Document