Droplet impingement on nano-textured superhydrophobic surface: Experimental and numerical study

2019 ◽  
Vol 491 ◽  
pp. 160-170 ◽  
Author(s):  
Jian Qu ◽  
Yaolin Yang ◽  
Shusheng Yang ◽  
Dinghua Hu ◽  
Huihe Qiu
Author(s):  
Hao Zhang ◽  
Chihyung Wen ◽  
Junwei Su

Droplet impingement is the basic module in both ice accretion and anti-icing numerical calculation. A three dimensional finite volume approach with the capacity of modeling the in-flight droplet impingement on a wide range of subsonic regime is therefore established in this research, using OpenFOAM®. The Eulerian model is applied to estimate the droplet flow field with the same computational grid sets as those of the air flow calculation. The roughness effect caused by ice accretion is considered in the wall function modeling. Thus, the collection efficiency could be investigated for further icing numerical simulations. This approach is validated on both cylinder and sphere benchmark cases. The results are compared with the corresponding experimental and LEWICE (LEWis ICE accretion program) simulation data.


2021 ◽  
Vol 56 (6) ◽  
pp. 799-811
Author(s):  
A. I. Ageev ◽  
A. N. Osiptsov

A two-dimensional pulsating flow of a viscous fluid in a plane channel whose wall has rectangular microcavities partially or completely filled with a compressible gas is investigated. This problem formulation can clarify the friction reduction mechanism in a laminar sublayer of a turbulent viscous boundary layer flow over a textured stripped superhydrophobic surface containing periodically arranged rectangular micro-cavities filled with gas. It is assumed that the dimensions of the cavities are much smaller than the channel thickness. On the macroscale, the problem of one-dimensional unsteady viscous flow in a plane channel with no-slip conditions on the walls and a harmonic variation of the pressure difference is solved. The solution obtained in this way is used for formulating non-stationary in time and periodic in space boundary conditions for the flow on the scale of a chosen cavity (microscale), with the instantaneous volume of the gas bubble in the cavity depending on the instantaneous pressure over the cavity. The flow on the microscale near a cavity with a gas bubble occurs in the Stokes regime. The numerical solution is obtained using an original version of the boundary element method. A parametric numerical study of the flow field in a pulsating shear flow over a cavity with a compressible gas bubble is performed. The averaged parameters characterizing the effective ‘velocity slip’ of viscous fluid and the friction reduction in a pulsating flow over a stripped superhydrophobic surface are calculated.


Meccanica ◽  
2019 ◽  
Vol 55 (2) ◽  
pp. 421-433 ◽  
Author(s):  
Povilas Vaitukaitis ◽  
Dario Maggiolo ◽  
Johan Remmelgas ◽  
Susanna Abrahmsén-Alami ◽  
Diana Bernin ◽  
...  

AbstractThe quality of a coated pharmaceutical tablet can be strongly affected by the interactions of water droplets with the porous substrate during processes such as coating process. Three different mechanisms co-exist in the coating process: water spreading, absorption and evaporation. Disentangling the fundamental understanding of these phenomena can therefore be crucial for achieving a higher quality of the products (e.g. a longer shelf-life of the tablets) and for controlling the efficiency of the process. This paper aims to investigate the spreading and absorption mechanisms after droplet impingement on a tablet using a Lattice-Boltzmann methodology. Our numerical results (droplet height and spreading, penetration depth and absorbed volume) are in a good agreement with experimental data and numerical simulations available in the literature. In particular, the spreading phase is characterised by the capillary spreading time scale, as confirmed by previous studies. In contrast to previous studies, we find that the absorption process begins at times shorter than the capillary spreading time but with a different power-law in the absorbed volume. We explain this behaviour through a modified Washburn law that takes into account three-dimensional effects. Our data can be used as a benchmark to test novel mathematical models.


2010 ◽  
Vol 44-47 ◽  
pp. 2499-2503
Author(s):  
Hong Liu ◽  
Mao Zhao Xie ◽  
Su Chun Wang ◽  
Ming Jia

This paper reports progress in the numerical simulations of a droplet impingement upon the wall film of the same liquid. The full Navier-Stokes equations are solved in axisymmetric formulation. The surface tension force is modeled by a continuum surface force (CSF) model. An adapting local refinement technique is used to provide the fine grid coupled by the volume-of fluid (VOF) method for tracking the interface between the gas and the droplet and liquid film. Results indicate that the motion behavior of droplet impingement upon the liquid film is dominantly influenced by the initial kinetic energy and the thickness of the film as well as the surface tension and the liquid viscosity.


2015 ◽  
Vol 27 (12) ◽  
pp. 122104 ◽  
Author(s):  
Cristian E. Clavijo ◽  
Julie Crockett ◽  
Daniel Maynes

2011 ◽  
Vol 38 (6) ◽  
pp. 1279-1287 ◽  
Author(s):  
Rui Li ◽  
Marco Pellegrini ◽  
Hisashi Ninokata ◽  
Michitsugu Mori

Sign in / Sign up

Export Citation Format

Share Document