Self-assembly of hydrophobically modified hyaluronic acid

2021 ◽  
Vol 546 ◽  
pp. 149161
Author(s):  
Frantisek Ondreas ◽  
Marcela Dusankova ◽  
Jaroslav Sita ◽  
Martin Cepa ◽  
Jiri Stepan ◽  
...  
2018 ◽  
Vol 6 (10) ◽  
pp. 1452-1457 ◽  
Author(s):  
Jianchuan Wen ◽  
Chih-Ko Yeh ◽  
Yuyu Sun

Candida-associated denture stomatitis (CADS) is a common, recurring clinical complication in denture wearers that can lead to serious oral and systemic health problems. Polyelectrolyte layer-by-layer (LBL) self-assembly technology on denture materials offers a new design principle for controlling fungal biofilm formation.


2021 ◽  
Vol 17 (9) ◽  
pp. 1765-1777
Author(s):  
Zaiyang Liu ◽  
Yiqun Wu ◽  
Hongjuan Dai ◽  
Shasha Li ◽  
Ying Zhu ◽  
...  

Osteosarcoma is one of the most aggressive cancers which greatly threatens the health of adolescents and surgery is difficult to resect the whole piece of tumor tissue. The residual tumor cells might proliferate at the tumor site and invade into the blood circulation, leading to tumor recurrence and metastasis. Besides, the invasion of tumor cells could also lead to bone injury. We designed a recombinant fibronectin-cadherin fusion protein/hydrophobically modified glycol chitosan-PTX nanoparticles (rFN-CDH/HGC-PTX) layer-by-layer self-assembly polymer based on biphasic calcium phosphate ceramic (BCP) (BCP-PEI-(rFN/CDH-PTX/HGC)n-rFN/CDH). The SEM, FTIR, XPS and contact angle experiments proved the successful synthesis of the polymer. The chemotherapy drug PTX and bone-repairing-related rFN/CDH fusion protein could be stably released within one week and the in vitro experiments exhibited the efficacy of the polymer to kill residual tumor cells and promote the proliferation of osteoblast, confirming that our polymer was a superior material for postoperative osteosarcoma therapy.


2013 ◽  
Vol 10 (84) ◽  
pp. 20130070 ◽  
Author(s):  
Haiyong Ao ◽  
Youtao Xie ◽  
Honglue Tan ◽  
Shengbing Yang ◽  
Kai Li ◽  
...  

Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.


Soft Matter ◽  
2018 ◽  
Vol 14 (23) ◽  
pp. 4762-4771 ◽  
Author(s):  
Denis Svechkarev ◽  
Alexander Kyrychenko ◽  
William M. Payne ◽  
Aaron M. Mohs

Side substituents on the hyaluronic acid backbone determine the morphology and hydration of the HA-derived nanoparticles hydrophobic domains.


2005 ◽  
Vol 109 (23) ◽  
pp. 11478-11492 ◽  
Author(s):  
Telma Costa ◽  
Maria da G. Miguel ◽  
Björn Lindman ◽  
Karin Schillén ◽  
J. Sérgio Seixas de Melo

2013 ◽  
Vol 14 (8) ◽  
pp. 2830-2836 ◽  
Author(s):  
S. Kokubun ◽  
I. Ratcliffe ◽  
P. A. Williams

Sign in / Sign up

Export Citation Format

Share Document