A fast and mild method to prepare d-Ti3C2Tx/ZnO composites at room temperature with excellent catalytic performance

2021 ◽  
Vol 558 ◽  
pp. 149863
Author(s):  
Jing Lv ◽  
Libo Zhang ◽  
Li Zhu ◽  
Feng Wang ◽  
Yan Zhang ◽  
...  
Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 753
Author(s):  
Noelia Losada-Garcia ◽  
Alba Rodriguez-Otero ◽  
Jose M. Palomo

In this study, a methodology was developed for the rapid degradation of trichloroethylene (TCE) and 1,1-dichloroethylene (1,1-DCE) in distilled water and room temperature without the production of toxic chlorinated by-products. This process was carried out using bionanohybrids of different metals (Pd, Fe, Cu and Zn) obtained by enzyme–metal coordination called MeNPs@CALB, which present different metal species and nanoparticle sizes. The Cu2O@CALB biohybrid, which contained Cu2O nanoparticles, showed excellent catalytic performance in TCE degradation by removing 95% (>125 ppm) in 10 min using 1.5 g/L of catalyst. On the other hand, in the degradation reaction of 1,1-DCE, Cu2O@CALB eliminated 94% (93 ppm) in 1 min. Cu2O@CALB exhibited excellent stability and recyclability under sustainable conditions, maintaining its effectiveness in more than 90% for three cycles.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 7 ◽  
Author(s):  
Noelia Losada-Garcia ◽  
Alba Rodriguez-Otero ◽  
Jose M. Palomo

Copper nanoparticles–enzyme biohybrid is a promising material for the remediation of contaminated waters, but its function is influenced by its effect on degradation organic pollutants. This study is the first investigation into the fast degradation of a high amount of Bisphenol A (BPA) in water at neutral pH and room temperature. Four different CuNPs biohybrids with different cu species and nanoparticle sizes were used as catalysts. The biohybrid CuNPs@CALB-3, which contained Cu2O nanoparticles of around 10 nm size, showed excellent catalytic performance removing >95% BPA content (45 ppm) in an aqueous solution in 20 min in the presence of hydrogen peroxide at pH 8 using 1.5 g/L of a catalyst. The catalyst showed excellent stability and recyclability at these conditions.


2017 ◽  
Vol 41 (7) ◽  
pp. 2793-2799 ◽  
Author(s):  
Guangyin Fan ◽  
Xiaojing Li ◽  
Yuling Ma ◽  
Yun Zhang ◽  
Jiangtao Wu ◽  
...  

Magnetic recyclable PtyCo1−y/Ti3C2X2 (X = O, F) catalyst exhibits excellent catalytic performance for the hydrolysis of AB at room temperature.


2014 ◽  
Vol 29 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Yu-Cheng DU ◽  
Guang-Wei ZHENG ◽  
Qi MENG ◽  
Li-Ping WANG ◽  
Hai-Guang FAN ◽  
...  

Author(s):  
Cui‐Ping Wu ◽  
Zhao Jin ◽  
Kai Xu ◽  
Wei‐Wei Wang ◽  
Chun‐Jiang Jia

Author(s):  
Yangyang Ren ◽  
Chuanliang Li ◽  
Baosong Li ◽  
Fan Gao ◽  
Xinghua Zhang ◽  
...  

PtPd nanoframes with excellent catalytic properties were obtained by etching Pd@PdPt core–shell RDs with Fe3+ in an acid environment.


Author(s):  
Yafei Liang ◽  
Beibei Gao ◽  
Lipeng Zhou ◽  
Xiaomei Yang ◽  
Tianliang Lu ◽  
...  

A facile approach has been developed to fabricate hierarchical SAPO-34 with large intracrystalline meso/macropores and excellent catalytic performance in the MTO reaction.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 974
Author(s):  
Bing Han ◽  
Haihong Meng ◽  
Fengyu Li ◽  
Jingxiang Zhao

Under the current double challenge of energy and the environment, an effective nitrogen reduction reaction (NRR) has become a very urgent need. However, the largest production of ammonia gas today is carried out by the Haber–Bosch process, which has many disadvantages, among which energy consumption and air pollution are typical. As the best alternative procedure, electrochemistry has received extensive attention. In this paper, a catalyst loaded with Fe3 clusters on the two-dimensional material C2N (Fe3@C2N) is proposed to achieve effective electrochemical NRR, and our first-principles calculations reveal that the stable Fe3@C2N exhibits excellent catalytic performance for electrochemical nitrogen fixation with a limiting potential of 0.57 eV, while also suppressing the major competing hydrogen evolution reaction. Our findings will open a new door for the development of non-precious single-cluster catalysts for effective nitrogen reduction reactions.


2019 ◽  
Vol 6 (5) ◽  
pp. 1152-1157 ◽  
Author(s):  
Xia Wang ◽  
Xiurong Zhang ◽  
Kai Zhang ◽  
Xiaokang Wang ◽  
Yutong Wang ◽  
...  

Amino-functionalized Cu-MOF for the efficient purification of methane from light hydrocarbons and excellent catalytic performance.


Sign in / Sign up

Export Citation Format

Share Document