scholarly journals The distribution of O and N in the surface region of laser-patterned titanium revealed by atom probe tomography

2021 ◽  
pp. 150193
Author(s):  
D. Kuczyńska-Zemła ◽  
G. Sundell ◽  
M. Zemła ◽  
M. Andersson ◽  
H. Garbacz
2014 ◽  
Vol 24 (2) ◽  
pp. 163
Author(s):  
Le Thi Giang ◽  
Nguyen Manh An

By mean of molecular beam epitaxy (MBE) equipped with a reflexion high-energy electron diffraction (RHEED) technique, we have chosen an intermediate and appropriate substrate temperature of 130\(\r{}\)C to reproducibly synthetize high-T\(_{C}\) Ge\(_{1 - x}\)Mn\(_{x}\) nanocolumns phase. Laser Pulse Atom Probe Tomography (LP-APT) technique have been used to determine at atomic scale the chemical composition inside nanocolumns and also in the surrounding diluted matrix. The Mn concentration inside nanocolumns is found to be highly inhomogeneous, it is about 20\({\%}\) at the bottom and can increase up to \(\sim 40{\%}\) in the top near the surface region. The Mn concentration in the matrix is about 0.25\({\%}\) at the surface and can reach a highest value of $\sim $1{\%} in regions close to the interface.


2021 ◽  
pp. 1-12
Author(s):  
Florant Exertier ◽  
Jiangting Wang ◽  
Jing Fu ◽  
Ross K.W. Marceau

Abstract


The Analyst ◽  
2021 ◽  
Vol 146 (1) ◽  
pp. 69-74
Author(s):  
Elizabeth Kautz ◽  
John Cliff ◽  
Timothy Lach ◽  
Dallas Reilly ◽  
Arun Devaraj

235U enrichment in a metallic nuclear fuel was measured via NanoSIMS and APT, allowing for a direct comparison of enrichment across length scales and resolutions.


Small Methods ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 2170004
Author(s):  
Daniel S. Mosiman ◽  
Yi‐Sheng Chen ◽  
Limei Yang ◽  
Brian Hawkett ◽  
Simon P. Ringer ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. M. Schwarz ◽  
C. A. Dietrich ◽  
J. Ott ◽  
E. M. Weikum ◽  
R. Lawitzki ◽  
...  

AbstractAtom Probe Tomography (APT) is currently a well-established technique to analyse the composition of solid materials including metals, semiconductors and ceramics with up to near-atomic resolution. Using an aqueous glucose solution, we now extended the technique to frozen solutions. While the mass signals of the common glucose fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved stoichiometrically correct values via signal deconvolution. Density functional theory (DFT) calculations were performed to investigate the stability of the detected pyranose fragments. This paper demonstrates APT’s capabilities to achieve sub-nanometre resolution in tracing whole glucose molecules in a frozen solution by using cryogenic workflows. We use a solution of defined concentration to investigate the chemical resolution capabilities as a step toward the measurement of biological molecules. Due to the evaporation of nearly intact glucose molecules, their position within the measured 3D volume of the solution can be determined with sub-nanometre resolution. Our analyses take analytical techniques to a new level, since chemical characterization methods for cryogenically-frozen solutions or biological materials are limited.


2021 ◽  
pp. 113334
Author(s):  
Katja Eder ◽  
Vijay Bhatia ◽  
Jiangtao Qu ◽  
Brandon Van Leer ◽  
Mikhail Dutka ◽  
...  

Author(s):  
Luke Daly ◽  
Martin R. Lee ◽  
James R. Darling ◽  
Ingrid McCarrol ◽  
Limei Yang ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 1268-1269
Author(s):  
Sandra Taylor ◽  
Arun Devaraj ◽  
Yongsoon Shin ◽  
Jinhui Tao ◽  
Garry Buchko ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Norem ◽  
Z. Insepov ◽  
A. Hassanein

AbstractAlthough used in the design and costing of large projects such as linear colliders and fusion tokamaks, the theory of vacuum arcs and gradient limits is not well understood. Almost 120 years after the isolation of vacuum arcs, the exact mechanisms of the arcs and the damage they produce are still being debated. We describe our simple and general model of the vacuum arc that can incorporate all active mechanisms and aims to explain all relevant data. Our four stage model, is based on experiments done at 805 MHz with a variety of cavity geometries, magnetic fields, and experimental techniques as well as data from Atom Probe Tomography and failure analysis of microelectronics. The model considers the trigger, plasma formation, plasma evolution and surface damage phases of the RF arc. This paper also examines how known mechanisms can explain the observed sharp field dependence, fast breakdown times and observed surface damage. We update the model and discuss new features while also pointing out where new data would be useful in extending the model to a wider range of frequencies.


Sign in / Sign up

Export Citation Format

Share Document