signal deconvolution
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Derek H Janssens ◽  
Dominik J. Otto ◽  
Manu Setty ◽  
Kami Ahmad ◽  
Steven Henikoff

Cleavage Under Targets & Tagmentation (CUT&Tag) is an antibody-directed transposase tethering strategy for in situ chromatin profiling in small samples and single cells. We describe a modified CUT&Tag protocol using a mixture of an antibody to the initiation form of RNA Polymerase II (Pol2 Serine-5 phosphate) and an antibody to repressive Polycomb domains (H3K27me3) followed by computational signal deconvolution to produce high-resolution maps of both the active and repressive regulomes in single cells. The ability to seamlessly map active promoters, enhancers and repressive regulatory elements using a single workflow provides a complete regulome profiling strategy suitable for high-throughput single-cell platforms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. M. Schwarz ◽  
C. A. Dietrich ◽  
J. Ott ◽  
E. M. Weikum ◽  
R. Lawitzki ◽  
...  

AbstractAtom Probe Tomography (APT) is currently a well-established technique to analyse the composition of solid materials including metals, semiconductors and ceramics with up to near-atomic resolution. Using an aqueous glucose solution, we now extended the technique to frozen solutions. While the mass signals of the common glucose fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved stoichiometrically correct values via signal deconvolution. Density functional theory (DFT) calculations were performed to investigate the stability of the detected pyranose fragments. This paper demonstrates APT’s capabilities to achieve sub-nanometre resolution in tracing whole glucose molecules in a frozen solution by using cryogenic workflows. We use a solution of defined concentration to investigate the chemical resolution capabilities as a step toward the measurement of biological molecules. Due to the evaporation of nearly intact glucose molecules, their position within the measured 3D volume of the solution can be determined with sub-nanometre resolution. Our analyses take analytical techniques to a new level, since chemical characterization methods for cryogenically-frozen solutions or biological materials are limited.


2021 ◽  
Author(s):  
Tim Schwarz ◽  
Carolin Dietrich ◽  
Jonas Ott ◽  
Eric Weikum ◽  
Robert Lawitzki ◽  
...  

Abstract Atom Probe Tomography (APT) is currently a well-established technique to analyse the composition of solid materials including metals, semiconductors and ceramics with up to near-atomic resolution. Using an aqueous glucose solution, we now extended the technique to frozen solutions. While the mass signals of the common glucose fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved stoichiometrically correct values via signal deconvolution. Density functional theory (DFT) calculations were performed to investigate the stability of the detected pyranose fragments. This paper demonstrates APT’s capabilities to achieve sub-nanometre resolution in tracing whole glucose molecules in a frozen solution by using cryogenic workflows. We use a solution of defined concentration to investigate the chemical and spatial resolution capabilities as a step toward the measurement of biological molecules in solution in 3D with sub-nanometre resolution by using cryo-APT. Our analyses take analytical techniques to a new level, since chemical characterization methods for cryogenically-frozen solutions or biological materials are limited.


2021 ◽  
Vol 22 (3) ◽  
pp. 1086
Author(s):  
Shunji Yamada ◽  
Eisuke Chikayama ◽  
Jun Kikuchi

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy provides information on native structures and the dynamics for predicting and designing the physical properties of multi-component solid materials. However, such an analysis is difficult because of the broad and overlapping spectra of these materials. Therefore, signal deconvolution and prediction are great challenges for their ssNMR analysis. We examined signal deconvolution methods using a short-time Fourier transform (STFT) and a non-negative tensor/matrix factorization (NTF, NMF), and methods for predicting NMR signals and physical properties using generative topographic mapping regression (GTMR). We demonstrated the applications for macromolecular samples involved in cellulose degradation, plastics, and microalgae such as Euglena gracilis. During cellulose degradation, 13C cross-polarization (CP)–magic angle spinning spectra were separated into signals of cellulose, proteins, and lipids by STFT and NTF. GTMR accurately predicted cellulose degradation for catabolic products such as acetate and CO2. Using these methods, the 1H anisotropic spectrum of poly-ε-caprolactone was separated into the signals of crystalline and amorphous solids. Forward prediction and inverse prediction of GTMR were used to compute STFT-processed NMR signals from the physical properties of polylactic acid. These signal deconvolution and prediction methods for ssNMR spectra of macromolecules can resolve the problem of overlapping spectra and support macromolecular characterization and material design.


2020 ◽  
Vol 21 (8) ◽  
pp. 2978 ◽  
Author(s):  
Shunji Yamada ◽  
Atsushi Kurotani ◽  
Eisuke Chikayama ◽  
Jun Kikuchi

Nuclear magnetic resonance (NMR) spectroscopy is commonly used to characterize molecular complexity because it produces informative atomic-resolution data on the chemical structure and molecular mobility of samples non-invasively by means of various acquisition parameters and pulse programs. However, analyzing the accumulated NMR data of mixtures is challenging due to noise and signal overlap. Therefore, data-cleansing steps, such as quality checking, noise reduction, and signal deconvolution, are important processes before spectrum analysis. Here, we have developed an NMR measurement informatics tool for data cleansing that combines short-time Fourier transform (STFT; a time–frequency analytical method) and probabilistic sparse matrix factorization (PSMF) for signal deconvolution and noise factor analysis. Our tool can be applied to the original free induction decay (FID) signals of a one-dimensional NMR spectrum. We show that the signal deconvolution method reduces the noise of FID signals, increasing the signal-to-noise ratio (SNR) about tenfold, and its application to diffusion-edited spectra allows signals of macromolecules and unsuppressed small molecules to be separated by the length of the T2* relaxation time. Noise factor analysis of NMR datasets identified correlations between SNR and acquisition parameters, identifying major experimental factors that can lower SNR.


2019 ◽  
Vol 30 ◽  
pp. 04011
Author(s):  
Vladimir Bondarev

In this paper, we consider the vector-matrix model of a pulsed neuron, focused on solving problems of digital signal processing. We extend the application domain of the model to the blind signal deconvolution problem. To achieve this goal we propose an unsupervised learning algorithm, which maximizes the absolute value of the normalized kurtosis of the output signal of the deconvolution filter using vector-matrix model of a pulsed neuron. To show the validity of the proposed learning algorithm, some examples of deconvolution of speech signals distorted by reverberation are presented.


Sign in / Sign up

Export Citation Format

Share Document