Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill

2011 ◽  
Vol 22 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Naoya Kotake ◽  
Mitsuyuki Kuboki ◽  
Shinichi Kiya ◽  
Yoshiteru Kanda
2017 ◽  
Vol 898 ◽  
pp. 1717-1723 ◽  
Author(s):  
Xue Mei Yi ◽  
Shota Suzuki ◽  
Xiong Zhang Liu ◽  
Ran Guo ◽  
Tomohiro Akiyama

Combustion synthesis (CS) of β-SiAlON was conducted using a 3D ball mill, with a focus on the effect of the 2D/3D ball mill premixing conditions on the CS raw material particle size as well as on the yield and grain shape of the final products. The results showed that the particle size distribution of the raw materials was significantly affected by the premixing conditions. Various particle sizes and particle size distributions could easily be obtained by using a 3D mill instead of a 2D mill due to the complex biaxial rotation movement of 3D milling. The particle size was more sensitive to the rotation ratio (vertical spin/horizontal spin, Vv/Vh) than the rotation rate when using 3D milling. Finally, β-SiAlON with less than 5 mass% unreacted Si was obtained using premix milling conditions of 135×200 [vertical spin (rpm) × horizontal spin (rpm)]. The grain shapes of the final products were clearly influenced by the particle size distribution of the raw mixtures.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1288
Author(s):  
Laura Colorado-Arango ◽  
Juan M. Menéndez-Aguado ◽  
Adriana Osorio-Correa

Six different particle size distribution (Gates–Gaudin–Schuhmann (GGS), Rosin–Rammler (RR), Lognormal, Normal, Gamma, and Swebrec) models were compared under different metallurgical coke grinding conditions (ball size and grinding time). Adjusted R2, Akaike information criterion (AIC), and the root mean of square error (RMSE) were employed as comparison criteria. Swebrec and RR presented superior comparison criteria with the higher goodness-of-fit and the lower AIC and RMSE, containing the minimum variance values among data. The worst model fitting was GGS, with the poorest comparison criteria and a wider results variation. The undulation Swebrec parameter was ball size and grinding time-dependent, considering greater b values (b > 3) at longer grinding times. The RR α parameter does not exhibit a defined tendency related to grinding conditions, while the k parameter presents smaller values at longer grinding times. Both models depend on metallurgical coke grinding conditions and are hence an indication of the grinding behaviour. Finally, oversize and ultrafine particles are found with ball sizes of 4.0 cm according to grinding time. The ball size of 2.54 cm shows slight changes in particle median diameter over time, while 3.0 cm ball size requires more grinding time to reduce metallurgical coke particles.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Caibin Wu ◽  
Ningning Liao ◽  
Guiming Shi ◽  
Liangliang Zhu

The grinding performance of hexagon grinding media particles has been compared with that of cylpebs grinding media particles. A batch grinding test was conducted using equal masses of hexagons and cylpebs. The particle size distribution and energy consumption during grinding of the ground product were analyzed, and the relationships among the specific surface area, bulk density, energy consumption, and t10 value are discussed. Under the same grinding conditions, the grinding capacity of hexagons was inferior to that of cylpebs. However, as the particle size of the feed became finer, the grinding effect of hexagons became more apparent. At the same time, the qualified particles content in the ground product was higher when using hexagons than when using cylpebs. The relationship between the specific surface area and energy consumption during grinding was consistent with the regular pattern of grinding fineness and energy consumption. In addition, the bulk density of minerals decreases with an increase in grinding energy. The same conclusion was obtained when −0.425 mm tungsten ore was used as a sample for validation. The flotation experiment result has carried out that hexagons as grinding media have a better flotation indicator than cylpebs in the same grinding fineness. It is demonstrated that although the grinding capacity of hexagons is inferior to that of cylpebs, less overgrinding occurs when using hexagons than when using cylpebs. For tungsten ore grinding, hexagons act as a finer grinding media than cylpebs.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Si ◽  
Yijun Cao ◽  
Guixia Fan

The breakage and liberation of minerals are the key to fluidized mining for minerals. In the ball milling process, steel balls function as not only a grinding action implementer but also energy carrier to determine the breakage behavior of ores and the production capacity of the mill. When ground products present a much coarse or much fine particle size distribution, the separation process will suffer, resulting in inefficient recovery of useful minerals. Optimal control of the particle size distribution of the products is therefore essential, but the complexity and randomness of ball mill grinding make it difficult to determine the appropriate ball size. To solve the problem in the precise measurement of grinding ball diameters, this paper carried out magnetite grinding experiments with grinding balls of different diameters under the same grinding conditions to study the influence pattern of steel ball diameters on the particle break behavior, the particle size distribution of ground products, and the mineral liberation degree distribution. The research proposed on the matching relation between the ball size and the quality of ground products is essential for improving the ground product quality and reducing energy consumption.


Sign in / Sign up

Export Citation Format

Share Document