scholarly journals The Effect of Grinding Media on Mineral Breakage Properties of Magnetite Ores

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Si ◽  
Yijun Cao ◽  
Guixia Fan

The breakage and liberation of minerals are the key to fluidized mining for minerals. In the ball milling process, steel balls function as not only a grinding action implementer but also energy carrier to determine the breakage behavior of ores and the production capacity of the mill. When ground products present a much coarse or much fine particle size distribution, the separation process will suffer, resulting in inefficient recovery of useful minerals. Optimal control of the particle size distribution of the products is therefore essential, but the complexity and randomness of ball mill grinding make it difficult to determine the appropriate ball size. To solve the problem in the precise measurement of grinding ball diameters, this paper carried out magnetite grinding experiments with grinding balls of different diameters under the same grinding conditions to study the influence pattern of steel ball diameters on the particle break behavior, the particle size distribution of ground products, and the mineral liberation degree distribution. The research proposed on the matching relation between the ball size and the quality of ground products is essential for improving the ground product quality and reducing energy consumption.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1288
Author(s):  
Laura Colorado-Arango ◽  
Juan M. Menéndez-Aguado ◽  
Adriana Osorio-Correa

Six different particle size distribution (Gates–Gaudin–Schuhmann (GGS), Rosin–Rammler (RR), Lognormal, Normal, Gamma, and Swebrec) models were compared under different metallurgical coke grinding conditions (ball size and grinding time). Adjusted R2, Akaike information criterion (AIC), and the root mean of square error (RMSE) were employed as comparison criteria. Swebrec and RR presented superior comparison criteria with the higher goodness-of-fit and the lower AIC and RMSE, containing the minimum variance values among data. The worst model fitting was GGS, with the poorest comparison criteria and a wider results variation. The undulation Swebrec parameter was ball size and grinding time-dependent, considering greater b values (b > 3) at longer grinding times. The RR α parameter does not exhibit a defined tendency related to grinding conditions, while the k parameter presents smaller values at longer grinding times. Both models depend on metallurgical coke grinding conditions and are hence an indication of the grinding behaviour. Finally, oversize and ultrafine particles are found with ball sizes of 4.0 cm according to grinding time. The ball size of 2.54 cm shows slight changes in particle median diameter over time, while 3.0 cm ball size requires more grinding time to reduce metallurgical coke particles.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Caibin Wu ◽  
Ningning Liao ◽  
Guiming Shi ◽  
Liangliang Zhu

The grinding performance of hexagon grinding media particles has been compared with that of cylpebs grinding media particles. A batch grinding test was conducted using equal masses of hexagons and cylpebs. The particle size distribution and energy consumption during grinding of the ground product were analyzed, and the relationships among the specific surface area, bulk density, energy consumption, and t10 value are discussed. Under the same grinding conditions, the grinding capacity of hexagons was inferior to that of cylpebs. However, as the particle size of the feed became finer, the grinding effect of hexagons became more apparent. At the same time, the qualified particles content in the ground product was higher when using hexagons than when using cylpebs. The relationship between the specific surface area and energy consumption during grinding was consistent with the regular pattern of grinding fineness and energy consumption. In addition, the bulk density of minerals decreases with an increase in grinding energy. The same conclusion was obtained when −0.425 mm tungsten ore was used as a sample for validation. The flotation experiment result has carried out that hexagons as grinding media have a better flotation indicator than cylpebs in the same grinding fineness. It is demonstrated that although the grinding capacity of hexagons is inferior to that of cylpebs, less overgrinding occurs when using hexagons than when using cylpebs. For tungsten ore grinding, hexagons act as a finer grinding media than cylpebs.


2021 ◽  
pp. 4-4
Author(s):  
Nemanja Bojanic ◽  
Aleksandar Fistes ◽  
Tatjana Dosenovic ◽  
Aleksandar Takaci ◽  
Mirjana Brdar ◽  
...  

A method based on the reverse breakage matrix approach is proposed for controlling the effects that milling has on the particle size distribution and composition of the comminuted material. Applicability, possibilities, and limitations of the proposed method are tested on examples related to the process of wheat flour milling. It has been shown that the reverse matrix approach can be successfully used for defining the particle size distribution of the input material leading to the desired, predetermined particle size and compositional distribution in the output material. Moreover, we have illustrated that it is possible to simultaneously control both, input and output particle size distribution, together with the composition of the output material.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 862
Author(s):  
José Delgado ◽  
Freddy A. Lucay ◽  
Felipe D. Sepúlveda

Uncertainty in industrial processes is very common, but it is particularly high in the grinding process (GP), due to the set of interacting operating/design parameters. This uncertainty can be evaluated in different ways, but, without a doubt, one of the most important parameters that characterise all GPs is the particle size distribution (PSD). However, is the PSD a good way to quantify the uncertainty in the milling process? This is the question we attempt to answer in this paper. To do so, we use 10 experimental grinding repetitions, 3 grinding times, and 14 Tyler meshes (more than 400 experimental results). The most relevant results were compared for the weight percentage for each size (WPES), cumulative weight undersize (CWU), or the use of particle size distribution models (PSDM), in terms of continuous changes in statistical parameters in WPES for different grinding times. The probability distribution was found to be changeable when reporting the results of WPES/CWU/PSDM, we detected the over-/under-estimation of uncertainty when using WPES/CWU, and variations in the relationships between sizes were observed when using WPES/CWU. Finally, our conclusion was that the way in which the data are analysed is not trivial, due to the possible deviations that may occur in the uncertainty process.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Byung-Wan Jo ◽  
Sumit Chakraborty ◽  
Ki Heon Kim ◽  
Yun Sung Lee

The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm) utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h) and grinding agent (methanol and ethanol) on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle<350 nm and 50% of the cement particle<220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.


2019 ◽  
Vol 946 ◽  
pp. 293-297 ◽  
Author(s):  
Ivan N. Egorov ◽  
Svetlana I. Egorova ◽  
Viktor P. Kryzhanovsky

Article presents an experimental study result of milling coarse strontium hexaferrite in beater mill with formation of magneto fluidized bed and without it. Magneto fluidized bed is formed by mutually perpendicular constant and alternating gradient magnetic fields. We studied the dynamics of particle size distribution from milling time and parameters of magnetic fields. Microstructure dynamics of strontium hexaferrite powder particles milled in various regimes was studied by X-ray diffraction methods. Milling efficiency and energy efficiency of milling process were studied in conditions with and without powder fluidization by magnetic fields. Analysis of experimental data showed advantages of milling in magneto fluidized bed in increased efficiency, particle size distribution homogeneity and powder chemical activity because of lattice micro-stresses.


Author(s):  
D. Cardenas Garcia ◽  
H. Galbraith ◽  
C.J. Newbold ◽  
J.A. Rooke

Rice polishings (RP) which are produced as a by-product during the pearling of hulled rice have been successfully used as a supplementary food for ruminants. However, information on the effects of feeding RP on rumen fermentation is contradictory. Valdez et al. (1977) found RP had little effect on rumen fermentation in bulls and suggested that the stimulation in growth rate observed, with RP may be mediated by the provision of nutrients postruminally. In contrast, Cardenas et al. (1992) reported that RP stimulated volatile fatty acid concentrations and microbial numbers when added to a rumen simulating fermentor (Rusitec). One reason for these differences might be that changes in the milling process, used to produce RP, have resulted in a by-product with different physical characteristics to that used in earlier studies. The experiment described here was designed to investigate the particle size distribution in Colombian rice polishings and the effect of these fractions on the rumen fermentation in vitro.


2021 ◽  
pp. X
Author(s):  
Shuhua LIU ◽  
Hao WANG ◽  
Hongling WANG

We study the grinding dynamic behavior and particle size distribution (PSD) characteristics of tuff powder. With the analysis of particle size and data of activity test, the results indicate that tuff powder is easy to be ground for the coarse-grained while is difficult for the fine-grained. It is feasible to quantitatively express the milling process of tuff powder by Divas-Aliavden milling dynamic equation. The milling speed and the milling time are negatively correlated, and the grinding efficiency is minimized after 60 min. Equivalent particle size (EPS) is positively linearly correlated with the logarithm of grinding time, while specific surface area (SSA) is inversely correlated, both of them have a highly linear correlation. The PSD of tuff powder, which complies well with the Rosin-Rammler-Bennet (RRB) distribution model, has typical fractal characteristics, and its fractal dimension is also positively correlated with the milling time.


2017 ◽  
Vol 267 ◽  
pp. 7-11
Author(s):  
Zane Grigale-Soročina ◽  
Ingmārs Birks ◽  
Mārtiņš Kalniņš

This report explores two key manufacturing processes, and assesses multiple parameters for optimization of these processes. High shear dispersion using a rotor-stator style homogenizer and high-energy grinding using a basket type mill with zirconium balls as the grinding media were studied. The variation between grinding organic and inorganic pigments was assessed as they give different challenges and require different operations to produce successful results. Obtaining the correct particle size distribution of pigments for decorative coatings is of paramount importance for achieving a high quality, functioning, aesthetically pleasing finished product. This analysis will explore the de-agglomeration and dispersion of inorganic TiO2 and organic Red 6 pigments using basket milling technology. High energy basket mill grinding produced the smallest particle size and smallest particle size distribution comparing with high shear dispersion. Used technology allowed to achieve inorganic pigment TiO2 particle size and particle size distribution suitable for use in coatings on natural nails. For organic pigment Red 6 used technology should be customized.


Sign in / Sign up

Export Citation Format

Share Document