Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses

Aquaculture ◽  
2020 ◽  
Vol 516 ◽  
pp. 734613 ◽  
Author(s):  
Inês Guerreiro ◽  
Carolina Castro ◽  
Beatriz Antunes ◽  
Filipe Coutinho ◽  
Fábio Rangel ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 297
Author(s):  
Jessica de Souza Vilela ◽  
Tharcilla I. R. C. Alvarenga ◽  
Nigel R. Andrew ◽  
Malcolm McPhee ◽  
Manisha Kolakshyapati ◽  
...  

We evaluated the effects of full-fat black soldier fly larvae (BSFL) on broiler carcass composition, cut yield, and breast meat quality. Broilers were fed for 42 days with up to 20% dietary inclusion of BSFL (0, 5, 10, 15, and 20%). On day 42, 120 broilers were slaughtered, and images were taken using computed tomography. Breasts, drumsticks, and thighs were collected for cut yield determination. The pH, color, lipid oxidation, cooking loss, shear force, amino acid profile, and fatty acid profile of the breast meat were assessed. There was no dietary effect on carcass composition or meat quality parameters except for fatty and amino acids compositions. When 20% BSFL was included in the diet, individual fatty and amino acids, such as lauric and myristic acids, aspartic acid, glutamine, and lysine, increased by 22.0-, 5.50-, 1.08-, 1.06-, and 1.06-fold, respectively (p < 0.05). Although total polyunsaturated fatty acids decreased, eicosapentaenoic fatty acids (EPA) increased by 78% in the 20% BSFL inclusion group. In conclusion, up to 20%, dietary full-fat BSFL did not affect key meat characteristics but positively increased the levels of the health-claimable omega-3 fatty acid EPA.


2008 ◽  
Vol 104 (2) ◽  
pp. 363-370 ◽  
Author(s):  
C. Rantzau ◽  
M. Christopher ◽  
F. P. Alford

The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of ∼60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 223
Author(s):  
Carla O. Silva ◽  
Tiago Simões ◽  
Rafael Félix ◽  
Amadeu M.V.M. Soares ◽  
Carlos Barata ◽  
...  

The seaweed Asparagopsis armata exhibits a strong invasive behavior, producing halogenated compounds with effective biological effects. This study addresses the biochemical responses to sublethal concentrations of A. armata exudate on the marine snail Gibbula umbilicalis whole body and the shrimp Palaemon elegans eyes and hepatopancreas. Antioxidant defenses superoxide dismutase (SOD) and glutathione-S-transferase (GST), oxidative damage endpoints lipid peroxidation (LPO) and DNA damage, the neuronal parameter acetylcholinesterase (AChE), and the fatty acid profile were evaluated. Results revealed different metabolic responses in both species. Despite previous studies indicating that the exudate affected G. umbilicalis’ survival and behavior, this does not seem to result from oxidative stress or neurotoxicity. For P. elegans, the inhibition of AChE and the decrease of antioxidant capacity is concomitant with the increase of LPO, suggesting neurotoxicity and oxidative stress as contributor mechanisms of toxicity for this species. Fatty acid profile changes were more pronounced for P. elegans with a general increase in polyunsaturated fatty acids (PUFAs) with the exudate exposure, which commonly means a defense mechanism protecting from membrane disruption. Nonetheless, the omega-3 PUFAs arachidonic acid (ARA) and docosapentaenoic acid (DPA) increased in both invertebrates, indicating a common regulation mechanism of inflammation and immunity responses.


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 818-818
Author(s):  
K. R. Wall ◽  
C. R. Kerth ◽  
T. R. Whitney ◽  
S. B. Smith ◽  
J. L. Glasscock ◽  
...  

The quality, safety, and suitability of animal fat for processing of a specific meat product is a critical issue. Increasing the human awareness about the health aspects associated with increased intake of animal fat, makes camel fat a suitable raw material for meat processing due to its excellent nutritional contribution. Therefore, the target of this study is examination of the sensory, physicochemical, fat oxidation, fatty acid profile, and other quality parameters of camel fat to evaluate the feasibility for processing of different meat products. To achieve this goal, 30 fat samples each from the hump, renal, and mesentery of Arabian male camels were investigated. The results showed that both the renal and mesenteric fat had honey color and medium-soft texture, while the hump had greyish-white color and hard texture. The sensory panel scores were significantly different between the hump and other fats. Hump fat had significantly (P<0.05) higher moisture, protein, and collagen content, while higher fat content was recorded in mesenteric fat. The fatty acid analysis showed that hump had high SFA and very low PUFA in comparison with both renal and mesenteric fat. Camel fat had high oxidation stability, and the mean values were very low in comparison with the levels of quality and acceptability. The ultrastructural analysis showed that hump fat had high elastin fibers which increase its hardness. The results indicated that both renal and mesenteric fat were more suitable for the production of various meat products than the hump.


Sign in / Sign up

Export Citation Format

Share Document