scholarly journals Asparagopsis armata Exudate Cocktail: The Quest for the Mechanisms of Toxic Action of an Invasive Seaweed on Marine Invertebrates

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 223
Author(s):  
Carla O. Silva ◽  
Tiago Simões ◽  
Rafael Félix ◽  
Amadeu M.V.M. Soares ◽  
Carlos Barata ◽  
...  

The seaweed Asparagopsis armata exhibits a strong invasive behavior, producing halogenated compounds with effective biological effects. This study addresses the biochemical responses to sublethal concentrations of A. armata exudate on the marine snail Gibbula umbilicalis whole body and the shrimp Palaemon elegans eyes and hepatopancreas. Antioxidant defenses superoxide dismutase (SOD) and glutathione-S-transferase (GST), oxidative damage endpoints lipid peroxidation (LPO) and DNA damage, the neuronal parameter acetylcholinesterase (AChE), and the fatty acid profile were evaluated. Results revealed different metabolic responses in both species. Despite previous studies indicating that the exudate affected G. umbilicalis’ survival and behavior, this does not seem to result from oxidative stress or neurotoxicity. For P. elegans, the inhibition of AChE and the decrease of antioxidant capacity is concomitant with the increase of LPO, suggesting neurotoxicity and oxidative stress as contributor mechanisms of toxicity for this species. Fatty acid profile changes were more pronounced for P. elegans with a general increase in polyunsaturated fatty acids (PUFAs) with the exudate exposure, which commonly means a defense mechanism protecting from membrane disruption. Nonetheless, the omega-3 PUFAs arachidonic acid (ARA) and docosapentaenoic acid (DPA) increased in both invertebrates, indicating a common regulation mechanism of inflammation and immunity responses.

Author(s):  
Carla Silva ◽  
Tiago Simões ◽  
Rafael Félix ◽  
Amadeu Soares ◽  
Carlos Barata ◽  
...  

The red seaweed Asparagopsis armata exhibits a strong invasive behaviour and is included in the list of the “Worst invasive alien species threatening biodiversity in Europe”. This seaweed has been shown to produce a large diversity of halogenated compounds with effective biological effects, deeply affecting rockpool species. Therefore, the present study aimed to investigate the biochemical responses to sublethal concentrations of Asparagopsis armata exudate on two coastal organisms, the marine snail Gibbula umbilicalis and the rockpool shrimp Palaemon elegans. Antioxidant defences superoxide dismutase (SOD) and glutathione-S-transferase (GST), oxidative damage endpoints lipid peroxidation (LPO) and DNA damage, the neuronal parameter acetylcholinesterase (AChE), as well as the fatty acid profile were evaluated. Results revealed different metabolic responses between species, indicating that A. armata exudate affected the organisms through different pathways. Despite previous studies indicating that the exudate effected G. umbilicalis’ survival and behaviour, this does not seem to result from oxidative stress or addressed neurotoxicity. On the other hand, for P. elegans, an inhibition of AChE and the decrease of antioxidant capacity concomitant with the increase of LPO, suggests neurotoxicity and oxidative stress as mechanisms of exudate toxicity for this species. For fatty acids, there were different profile changes between species, also more pronounced for P. elegans with a general increase in PUFA with exudate exposure, which commonly means a defence mechanism protecting from membrane disruption. Nonetheless, the omega-3 PUFAs ARA and DPA were increased in both invertebrates, indicating a common mechanism regulation of inflammation and immunity responses to this stress. This work provides further insight on the mechanisms of invertebrate response and tolerance to an expanding coastal environmental stress as is the marine invader A. armata.


2019 ◽  
Vol 5 (1) ◽  
pp. 13 ◽  
Author(s):  
Nikola Babić ◽  
Fabienne Peyrot

Oxidative stress, defined as a misbalance between the production of reactive oxygen species and the antioxidant defenses of the cell, appears as a critical factor either in the onset or in the etiology of many pathological conditions. Several methods of detection exist. However, they usually rely on ex vivo evaluation or reports on the status of living tissues only up to a few millimeters in depth, while a whole-body, real-time, non-invasive monitoring technique is required for early diagnosis or as an aid to therapy (to monitor the action of a drug). Methods based on electron paramagnetic resonance (EPR), in association with molecular probes based on aminoxyl radicals (nitroxides) or hydroxylamines especially, have emerged as very promising to meet these standards. The principles involve monitoring the rate of decrease or increase of the EPR signal in vivo after injection of the nitroxide or the hydroxylamine probe, respectively, in a pathological versus a control situation. There have been many successful applications in various rodent models. However, current limitations lie in both the field of the technical development of the spectrometers and the molecular probes. The scope of this review will mainly focus on the latter.


2021 ◽  
Author(s):  
Liang Xiong ◽  
Jinyu Huang ◽  
Ying Gao ◽  
Yanfang Gao ◽  
Chunmei Wu ◽  
...  

Abstract Arsenic (As) is a ubiquitous environmental and industrial toxin with known correlates of oxidative stress and cognitive deficits in the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that represents a central cellular antioxidant defense mechanism and transcribes many antioxidant genes. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a well-known nuclear receptor to regulate lipid metabolism in many tissues, and it has been also associated with the control of oxidative stress, neuronal death, neurogenesis and differentiation. The role of Nrf2 and PPARγ in As-induced neurotoxicity is still debated. The present study was designed to investigate the neurobehavioral toxic effect of sub-chronic and middle-dose sodium arsenite exposure in mice hippocampus, as well as the response of Nrf2/PPARγ expression and influence on protein expression levels of their downstream antioxidant genes. Our results showed that mice treated with intraperitoneal injection of sodium arsenite (50 mg/kg body wt.) twice a week for 7 weeks resulted in increased generation of reactive oxygen species and impairment of spatial cognitive function. The present study also found a positive association between Nrf2/PPARγ expression in hippocampus of mice, and activation of antioxidant defenses by the evidently upregulated expression of their downstream genes, including superoxide dismutase, heme oxygenase-1 and glutathione peroxidase-3. Therefore, our findings were helpful for further understanding the role of Nrf2/PPARγ feedback loop in As-induced neurobehavioral toxicity.


2019 ◽  
Vol 157 (1) ◽  
pp. 72-82 ◽  
Author(s):  
I. Kafantaris ◽  
D. Stagos ◽  
B. Kotsampasi ◽  
D. Kantas ◽  
V. Koukoumis ◽  
...  

AbstractA feeding trial involving growing piglets was undertaken to establish whether feed supplemented with whey protein concentrate (WPC), exhibiting antioxidant properties, had any effects on welfare and meat quality. For that purpose, 48 weaned piglets (20-days-old) were assigned to two experimental groups receiving standard or experimental diet for 30 days. Blood and tissue collection were performed at various time-points. The following oxidative stress markers were assessed: reduced glutathione (GSH), catalase activity, total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARB) and hydrogen peroxide (H2O2) decomposition activity. The effects on bacterial growth and the fatty acid profile of meat were also assessed. Results showed that piglets fed with the WPC-supplemented diet had significantly increased antioxidant mechanisms in almost all tissues tested, as indicated by increases in GSH, H2O2 decomposition activity and TAC compared with the control group. Piglets fed with the experimental diet exhibited decreased oxidative stress-induced damage to lipids and proteins, as shown by decreases in TBARS and CARB in the WPC group compared with the control group. In addition, the experimental diet enhanced growth of facultative probiotic bacteria and lactic acid bacteria and inhibited growth of pathogen populations. In addition, WPC inclusion in piglets' diet increased n-3 fatty acids significantly and decreased n-6/n-3 ratio significantly compared with the control group. The current study showed that WPC inclusion in the diet had a significant effect on welfare and meat quality of growing piglets.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
May N. Bin-Jumah

Hypercholesterolemia is a metabolic disorder associated with oxidative stress. The present study investigated the protective effect ofMonolluma quadrangulaextract on hypercholesterolemia-induced oxidative stress in the liver and heart of high-cholesterol-diet- (HCD-) fed rats. The experimental animals received HCD for 10 weeks and were concurrently treated with 300 or 600 mg/kgM. quadrangulaextract. HCD-fed rats showed a significant increase in serum triglycerides, total cholesterol, LDL-cholesterol, vLDL-cholesterol, and cardiovascular risk indices along with decreased HDL-cholesterol and antiatherogenic index. TheM. quadrangulaextract significantly improved dyslipidemia and atherogenesis in HCD-fed rats. HCD induced a significant increase in serum transaminases, creatine kinase-MB, and proinflammatory cytokines. In addition, HDC induced a significant increase in hepatic and cardiac lipid peroxidation and decreased antioxidant enzymes. Treatment with theM. quadrangulaextract significantly alleviated liver and heart function markers, decreased proinflammatory cytokines and lipid peroxidation, and enhanced the antioxidant defenses. Also, theM. quadrangulaextract significantly reduced the expression of fatty acid synthase (FAS) and increased the expression of LDL receptor in the liver of HCD-fed rats. In conclusion, theM. quadrangulaextract has a potent antihyperlipidemic and cholesterol-lowering effect on HCD-fed rats. The beneficial effects of theM. quadrangulaextract were mediated through the increased antioxidant defenses, decreased inflammation and lipid peroxidation, and modulated hepatic FAS and LDL receptor gene expression.


2014 ◽  
Vol 29 (3) ◽  
pp. 178-185 ◽  
Author(s):  
Ana Lígia da Silva Nassar ◽  
Luisa Pereira Marot ◽  
Paula Payão Ovidio ◽  
Gabriela Salim Ferreira de Castro ◽  
Alceu Afonso Jordão Júnior

Aquaculture ◽  
2020 ◽  
Vol 516 ◽  
pp. 734613 ◽  
Author(s):  
Inês Guerreiro ◽  
Carolina Castro ◽  
Beatriz Antunes ◽  
Filipe Coutinho ◽  
Fábio Rangel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document