Predicted strong genetic gains from the application of genomic selection to improve growth related traits in barramundi (Lates calcarifer)

Aquaculture ◽  
2021 ◽  
pp. 737761
Author(s):  
DeanR. Jerry ◽  
David B. Jones ◽  
Marie Lillehammer ◽  
Cecile Massault ◽  
Shannon Loughnan ◽  
...  
2021 ◽  
Author(s):  
Vishnu Ramasubramanian ◽  
William Beavis

AbstractPlant breeding is a decision making discipline based on understanding project objectives. Genetic improvement projects can have two competing objectives: maximize rate of genetic improvement and minimize loss of useful genetic variance. For commercial plant breeders competition in the marketplace forces greater emphasis on maximizing immediate genetic improvements. In contrast public plant breeders have an opportunity, perhaps an obligation, to place greater emphasis on minimizing loss of useful genetic variance while realizing genetic improvements. Considerable research indicates that short term genetic gains from Genomic Selection (GS) are much greater than Phenotypic Selection (PS), while PS provides better long term genetic gains because PS retains useful genetic diversity during the early cycles of selection. With limited resources must a soybean breeder choose between the two extreme responses provided by GS or PS? Or is it possible to develop novel breeding strategies that will provide a desirable compromise between the competing objectives? To address these questions, we decomposed breeding strategies into decisions about selection methods, mating designs and whether the breeding population should be organized as family islands. For breeding populations organized into islands decisions about possible migration rules among family islands were included. From among 60 possible strategies, genetic improvement is maximized for the first five to ten cycles using GS, a hub network mating design in breeding populations organized as fully connected family islands and migration rules allowing exchange of two lines among islands every other cycle of selection. If the objectives are to maximize both short-term and long-term gains, then the best compromise strategy is similar except a genomic mating design, instead of a hub networked mating design, is used. This strategy also resulted in realizing the greatest proportion of genetic potential of the founder populations. Weighted genomic selection applied to both non-isolated and island populations also resulted in realization of the greatest proportion of genetic potential of the founders, but required more cycles than the best compromise strategy.


Crop Science ◽  
2015 ◽  
Vol 55 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Yoseph Beyene ◽  
Kassa Semagn ◽  
Stephen Mugo ◽  
Amsal Tarekegne ◽  
Raman Babu ◽  
...  

2018 ◽  
Vol 132 (3) ◽  
pp. 669-686 ◽  
Author(s):  
Kai Peter Voss-Fels ◽  
Mark Cooper ◽  
Ben John Hayes

2017 ◽  
Vol 7 (7) ◽  
pp. 2315-2326 ◽  
Author(s):  
Xuecai Zhang ◽  
Paulino Pérez-Rodríguez ◽  
Juan Burgueño ◽  
Michael Olsen ◽  
Edward Buckler ◽  
...  

Abstract Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C0) training population. A total of 1000 ear-to-row C0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C1). Predictions of the genotyped individuals forming cycle C1 were made, and the best predicted grain yielders were selected as parents of C2; this was repeated for more cycles (C2, C3, and C4), thereby achieving two cycles per year. Multi-environment trials of individuals from populations C0, C1, C2, C3, and C4, together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C1 to C4 reached 0.225 ton ha−1 per cycle, which is equivalent to 0.100 ton ha−1 yr−1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C0), genetic diversity narrowed only slightly during the last GS cycles (C3 and C4). Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time.


2020 ◽  
Vol 13 (3) ◽  
Author(s):  
Reshmi R. Das ◽  
M. T. Vinayan ◽  
Manish B. Patel ◽  
Ramesh K. Phagna ◽  
S. B. Singh ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Rosangela M. Simeão ◽  
Marcos D. V. Resende ◽  
Rodrigo S. Alves ◽  
Marco Pessoa-Filho ◽  
Ana Luisa S. Azevedo ◽  
...  

The world population is expected to be larger and wealthier over the next few decades and will require more animal products, such as milk and beef. Tropical regions have great potential to meet this growing global demand, where pasturelands play a major role in supporting increased animal production. Better forage is required in consonance with improved sustainability as the planted area should not increase and larger areas cultivated with one or a few forage species should be avoided. Although, conventional tropical forage breeding has successfully released well-adapted and high-yielding cultivars over the last few decades, genetic gains from these programs have been low in view of the growing food demand worldwide. To guarantee their future impact on livestock production, breeding programs should leverage genotyping, phenotyping, and envirotyping strategies to increase genetic gains. Genomic selection (GS) and genome-wide association studies play a primary role in this process, with the advantage of increasing genetic gain due to greater selection accuracy, reduced cycle time, and increased number of individuals that can be evaluated. This strategy provides solutions to bottlenecks faced by conventional breeding methods, including long breeding cycles and difficulties to evaluate complex traits. Initial results from implementing GS in tropical forage grasses (TFGs) are promising with notable improvements over phenotypic selection alone. However, the practical impact of GS in TFG breeding programs remains unclear. The development of appropriately sized training populations is essential for the evaluation and validation of selection markers based on estimated breeding values. Large panels of single-nucleotide polymorphism markers in different tropical forage species are required for multiple application targets at a reduced cost. In this context, this review highlights the current challenges, achievements, availability, and development of genomic resources and statistical methods for the implementation of GS in TFGs. Additionally, the prediction accuracies from recent experiments and the potential to harness diversity from genebanks are discussed. Although, GS in TFGs is still incipient, the advances in genomic tools and statistical models will speed up its implementation in the foreseeable future. All TFG breeding programs should be prepared for these changes.


2013 ◽  
Vol 18 (4) ◽  
pp. 936-943
Author(s):  
Yang YU ◽  
Xiaojun ZHANG ◽  
Fuhua LI ◽  
Jianhai XIANG

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Emmanuel A. Lozada-Soto ◽  
Christian Maltecca ◽  
Duc Lu ◽  
Stephen Miller ◽  
John B. Cole ◽  
...  

Abstract Background While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. Results We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. Conclusions In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


2021 ◽  
Author(s):  
Abdelhalim Elazab ◽  
Felipe Moraga ◽  
Alejandro del Pozo

Sign in / Sign up

Export Citation Format

Share Document