scholarly journals Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology

2021 ◽  
pp. 101393
Author(s):  
Moisés Selman ◽  
Annie Pardo
2018 ◽  
Vol 20 (1) ◽  
pp. 49-72 ◽  
Author(s):  
Pamela K. Kreeger ◽  
Laura E. Strong ◽  
Kristyn S. Masters

In their native environment, cells are immersed in a complex milieu of biochemical and biophysical cues. These cues may include growth factors, the extracellular matrix, cell–cell contacts, stiffness, and topography, and they are responsible for regulating cellular behaviors such as adhesion, proliferation, migration, apoptosis, and differentiation. The decision-making process used to convert these extracellular inputs into actions is highly complex and sensitive to changes both in the type of individual cue (e.g., growth factor dose/level, timing) and in how these individual cues are combined (e.g., homotypic/heterotypic combinations). In this review, we highlight recent advances in the development of engineering-based approaches to study the cellular decision-making process. Specifically, we discuss the use of biomaterial platforms that enable controlled and tailored delivery of individual and combined cues, as well as the application of computational modeling to analyses of the complex cellular decision-making networks.


2020 ◽  
Vol 6 (27) ◽  
pp. eaba4526 ◽  
Author(s):  
Juan Diego Naranjo ◽  
Lindsey T. Saldin ◽  
Eric Sobieski ◽  
Lina M. Quijano ◽  
Ryan C. Hill ◽  
...  

Chronic inflammatory gastric reflux alters the esophageal microenvironment and induces metaplastic transformation of the epithelium, a precancerous condition termed Barrett’s esophagus (BE). The microenvironmental niche, which includes the extracellular matrix (ECM), substantially influences cell phenotype. ECM harvested from normal porcine esophageal mucosa (eECM) was formulated as a mucoadhesive hydrogel, and shown to largely retain basement membrane and matrix-cell adhesion proteins. Dogs with BE were treated orally with eECM hydrogel and omeprazole (n = 6) or omeprazole alone (n = 2) for 30 days. eECM treatment resolved esophagitis, reverted metaplasia to a normal, squamous epithelium in four of six animals, and downregulated the pro-inflammatory tumor necrosis factor–α+ cell infiltrate compared to control animals. The metaplastic tissue in control animals (n = 2) did not regress. The results suggest that in vivo alteration of the microenvironment with a site-appropriate, mucoadhesive ECM hydrogel can mitigate the inflammatory and metaplastic response in a dog model of BE.


2003 ◽  
Vol 71 (7) ◽  
pp. 4151-4158 ◽  
Author(s):  
Xhavit Zogaj ◽  
Werner Bokranz ◽  
Manfred Nimtz ◽  
Ute Römling

ABSTRACT Citrobacter spp., Enterobacter spp., and Klebsiella spp. isolated from the human gut were investigated for the biosynthesis of cellulose and curli fimbriae (csg). While Citrobacter spp. produced curli fimbriae and cellulose and Enterobacter spp. produced cellulose with various temperature-regulatory programs, Klebsiella spp. did not show pronounced expression of those extracellular matrix components. Investigation of multicellular behavior in two Citrobacter species and Enterobacter sakazakii showed an extracellular matrix, cell clumping, pellicle formation, and biofilm formation associated with the expression of cellulose and curli fimbriae. In those three strains, the csgD-csgBA region and the cellulose synthase gene bcsA were conserved. PCR screening for the presence of csgD, csgA and bcsA revealed that besides Klebsiella pneumoniae and Klebsiella oxytoca, all species investigated harbored the genetic information for expression of curli fimbriae and cellulose. Since Citrobacter spp., Enterobacter spp., and Klebsiella spp. are frequently found to cause biofilm-related infections such as catheter-associated urinary tract infections, the human gut could serve as a reservoir for dissemination of biofilm-forming isolates.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2145
Author(s):  
Tillie Louise Hackett ◽  
Emmanuel Twumasi Osei

The lung extracellular matrix (ECM) is a complex and dynamic mixture of fibrous proteins (collagen, elastin), glycoproteins (fibronectin, laminin), glycosaminoglycans (heparin, hyaluronic acid) and proteoglycans (perlecan, versican), that are essential for normal lung development and organ health [...]


Sign in / Sign up

Export Citation Format

Share Document