Muscle Force Steadiness in Older Adults Before and After Total Knee Arthroplasty

2014 ◽  
Vol 29 (6) ◽  
pp. 1143-1148 ◽  
Author(s):  
Jessica W. Smith ◽  
Robin L. Marcus ◽  
Christopher L. Peters ◽  
Christopher E. Pelt ◽  
Brian L. Tracy ◽  
...  
2021 ◽  
Vol 29 (1) ◽  
pp. 230949902110020
Author(s):  
Seikai Toyooka ◽  
Hironari Masuda ◽  
Nobuhiro Nishihara ◽  
Takashi Kobayashi ◽  
Wataru Miyamoto ◽  
...  

Purpose: To evaluate the integrity of lateral soft tissue in varus osteoarthritis knee by comparing the mechanical axis under varus stress during navigation-assisted total knee arthroplasty before and after compensating for a bone defect with the implant. Methods: Sixty-six knees that underwent total knee arthroplasty were investigated. The mechanical axis of the operated knee was evaluated under manual varus stress immediately after knee exposure and after navigation-assisted implantation. The correlation between each value of the mechanical axis and degree of preoperative varus deformity was compared by regression analysis. Results: The maximum mechanical axis under varus stress immediately after knee exposure increased in proportion to the degree of preoperative varus deformity. Moreover, the maximum mechanical axis under varus stress after implantation increased in proportion to the degree of preoperative varus deformity. Therefore, the severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, regression coefficients after implantation were much smaller than those measured immediately after knee exposure (0.99 vs 0.20). Based on the results of the regression formula, the postoperative laxity of the lateral soft tissue was negligible, provided that an appropriate thickness of the implant was compensated for the bone and cartilage defect in the medial compartment without changing the joint line. Conclusion: The severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, even if the degree of preoperative varus deformity is severe, most cases may not require additional procedures to address the residual lateral laxity.


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
Dongquan Shi ◽  
Xingquan Xu ◽  
Anyun Guo ◽  
Jin Dai ◽  
Zhihong Xu ◽  
...  

Introduction. Mechanical alignment deviation after total knee arthroplasty is a major reason for early loosening of the prosthesis. Achieving optimum cement penetration during fixation of the femoral and tibial component is an essential step in performing a successful total knee arthroplasty. Bone cement is used to solidify the bone and prosthesis. Thickness imbalance of bone cement leads to the deviation of mechanical alignment. To estimate the influence of bone cement, a retrospective study was conducted.Materials and Methods. A total of 36 subjects were studied. All the TKA were performed following the standard surgical protocol for navigated surgery by medial approach with general anaesthesia. Prostheses were fixed by bone cement.Results. We compared the mechanical axis, flexion/extension, and gap balance before and after cementation. All the factors were different compared with those before and after cementation. Internal rotation was reached with statistical significance (P=0.03).Conclusion. Bone cement can influence the mechanical axis, flexion/extension, and gap balance. It also can prompt us to make a change when poor knee kinematics were detected before cementation.


2012 ◽  
Vol 303 (4) ◽  
pp. R376-R386 ◽  
Author(s):  
Ashley N. Bailey ◽  
Austin D. Hocker ◽  
Benjamin R. Vermillion ◽  
Keith Smolkowski ◽  
Steven N. Shah ◽  
...  

Total knee arthroplasty (TKA) is the most common and a cost-effective surgical remediation for older adults with long-standing osteoarthritis. In parallel with the expanding population of older adults, the number of TKAs performed annually is projected to be 3.48 million by 2030. During this surgery, a tourniquet is used to stop blood flow to the operative leg. However, the molecular pathways that are affected by tourniquet use during TKA continue to be elucidated. We hypothesized that components of the catabolic FoxO3a (i.e., MuRF1, MAFbx, and Bnip3) pathway, as well as the cellular stress pathways [i.e., stress-activated protein kinase (SAPK)/JNK and MAPKs], are upregulated during TKA. The purpose of this study was to measure changes in transcripts and proteins involved in muscle cell catabolic and stress-activated pathways. We obtained muscle biopsies from subjects, 70 ± 1.3 yr, during TKA, from the vastus lateralis at baseline (before tourniquet inflation), during maximal ischemia (just before tourniquet release), and during reperfusion. Total tourniquet time was 43 ± 2 min and reperfusion time was 16 ± 1. Significant increases in FoxO3a downstream targets, MAFbx and MuRF1, were present for mRNA levels during ischemia (MAFbx, P = 0.04; MuRF1, P = 0.04), and protein expression during ischemia (MAFbx, P = 0.002; MuRF1, P = 0.001) and reperfusion (MuRF1, P = 0.002). Additionally, stress-activated JNK gene expression ( P = 0.01) and protein were elevated during ischemia ( P = 0.001). The results of this study support our hypothesis that protein degradation pathways are stimulated during TKA. Muscle protein catabolism is likely to play a role in the rapid loss of muscle volume measured within 2 wk of this surgery.


2012 ◽  
Vol 45 (13) ◽  
pp. 2215-2221 ◽  
Author(s):  
K.C.T. Ho ◽  
S.K. Saevarsson ◽  
H. Ramm ◽  
R. Lieck ◽  
S. Zachow ◽  
...  

2014 ◽  
Vol 29 (7) ◽  
pp. 1388-1393 ◽  
Author(s):  
David A.J. Wilson ◽  
Janie L. Astephen Wilson ◽  
Glen Richardson ◽  
Michael J. Dunbar

2010 ◽  
Vol 25 (6) ◽  
pp. 964-969 ◽  
Author(s):  
Atsushi Kitagawa ◽  
Nobuhiro Tsumura ◽  
Takaaki Chin ◽  
Kazuyoshi Gamada ◽  
Scott A. Banks ◽  
...  

Author(s):  
Sara Birch ◽  
Torben Bæk Hansen ◽  
Maiken Stilling ◽  
Inger Mechlenburg

Background: Pain catastrophizing is associated with pain both before and after a total knee arthroplasty (TKA). However, it remains uncertain whether pain catastrophizing affects physical activity (PA). The aim was to examine the influence of pain catastrophizing on the PA profile, knee function, and muscle mass before and after a TKA. Methods: The authors included 58 patients with knee osteoarthritis scheduled for TKA. Twenty-nine patients had a score >22 on the Pain Catastrophizing Scale (PCS), and 29 patients had a score <11. PA was measured with a triaxial accelerometer preoperative, 3 months, and 12 months after TKA. Other outcome measures consisted of the Knee Osteoarthritis Outcome Score and dual-energy X-ray absorptiometry scans. Results: The authors found no difference in PA between patients with a better/low or a worse/high score on the PCS, and none of the groups increased their mean number of steps/day from preoperative to 12 months postoperative. Patients with better/low PCS scores had higher/better preoperative scores on the Knee Osteoarthritis Outcome Score subscales (symptoms, pain, and activity of daily living), and they walked longer in the 6-min walk test. Further, they had lower body mass index, lower percent fat mass, and higher percent muscle mass than patients with worse/high PCS scores both before and after a TKA. Conclusion: Preoperative pain catastrophizing did not influence PA before or after a TKA. Although the patients improved substantially in self-reported knee function, their PA did not increase. This may be important to consider when the clinicians are informing the patients about the expected benefits from the operation.


2019 ◽  
Vol 127 (2) ◽  
pp. 531-545 ◽  
Author(s):  
Jonathan B. Muyskens ◽  
Douglas M. Foote ◽  
Nathan J. Bigot ◽  
Lisa A. Strycker ◽  
Keith Smolkowski ◽  
...  

The purpose of this study was to investigate the underlying cellular basis of muscle atrophy (Placebo) and atrophy reduction (essential amino acid supplementation, EAAs) in total knee arthroplasty (TKA) patients by examining satellite cells and other key histological markers of inflammation, recovery, and fibrosis. Forty-one subjects (53–76 yr) scheduled for TKA were randomized into two groups, ingesting 20 g of EAAs or placebo, twice-daily, for 7 days before TKA and for 6 wk after surgery. A first set of muscle biopsies was obtained from both legs before surgery in the operating room, and patients were randomly assigned and equally allocated to have two additional biopsies at either 1 or 2 wk after surgery. Biopsies were processed for gene expression and immunohistochemistry. Satellite cells were significantly higher in patients ingesting 20 g of essential amino acids twice daily for the 7 days leading up to surgery compared with Placebo (operative leg P = 0.03 for satellite cells/fiber and P = 0.05 for satellite cell proportions for Type I-associated cells and P = 0.05 for satellite cells/fiber for Type II-associated cells.) Myogenic regulatory factor gene expression was different between groups, with the Placebo Group having elevated MyoD expression at 1 wk and EAAs having elevated myogenin expression at 1 wk. M1 macrophages were more prevalent in Placebo than the EAAs Group. IL-6 and TNF-α transcripts were elevated postsurgery in both groups; however, TNF-α declined by 2 wk in the EAAs Group. EAAs starting 7 days before surgery increased satellite cells on the day of surgery and promoted a more favorable inflammatory environment postsurgery. NEW & NOTEWORTHY Clinical studies by our group indicate that the majority of muscle atrophy after total knee arthroplasty (TKA) in older adults occurs rapidly, within the first 2 wks. We have also shown that essential amino acid supplementation (EAAs) before and after TKA mitigates muscle atrophy; however, the mechanisms are unknown. These results suggest that satellite cell numbers are elevated with EAA ingestion before surgery, and after surgery, EAA ingestion positively influences markers of inflammation. Combined, these data may help inform further studies designed to address the accelerated sarcopenia that occurs in older adults after major surgery.


2019 ◽  
Vol 72 ◽  
pp. 1-11 ◽  
Author(s):  
Laura Bragonzoni ◽  
Erika Rovini ◽  
Giuseppe Barone ◽  
Filippo Cavallo ◽  
Stefano Zaffagnini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document