Automated tibiofemoral joint segmentation based on deeply supervised 2D-3D ensemble U-net: Data from the osteoarthritis initiative

Author(s):  
Muhamad Hafiz Abd Latif ◽  
Ibrahima Faye
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaohui Zhang ◽  
Shuo Yuan ◽  
Jun Wang ◽  
Bagen Liao ◽  
De Liang

Abstract Background Recent studies have pointed out that arthroscopy, the commonly-used surgical procedure for meniscal tears, may lead to an elevated risk of knee osteoarthritis (KOA). The biomechanical factors of KOA can be clarified by the biomechanical analysis after arthroscopic partial meniscectomy (APM). This study aimed to elucidate the cartilage stress and meniscus displacement of the tibiofemoral joint under flexion and rotation loads after APM. Methods A detailed finite element model of the knee bone, cartilage, meniscus, and major ligaments was established by combining computed tomography and magnetic resonance images. Vertical load and front load were applied to simulate different knee buckling angles. At the same time, by simulating flexion of different degrees and internal and external rotations, the stresses on tibiofemoral articular cartilage and meniscus displacement were evaluated. Results Generally, the contact stress on both the femoral tibial articular cartilage and the meniscus increased with the increased flexion degree. Moreover, the maximum stress on the tibial plateau gradually moved backward. The maximum position shift value of the lateral meniscus was larger than that of the medial meniscus. Conclusion Our finite element model provides a realistic three-dimensional model to evaluate the influence of different joint range of motion and rotating tibiofemoral joint stress distribution. The decreased displacement of the medial meniscus may explain the higher pressure on the knee components. These characteristics of the medial tibiofemoral joint indicate the potential biomechanical risk of knee degeneration.


Author(s):  
Aqeel M. Alenazi ◽  
Bader A. Alqahtani ◽  
Vishal Vennu ◽  
Mohammed M. Alshehri ◽  
Ahmad D. Alanazi ◽  
...  

Background: This study examined the association between baseline gait speed with incident diabetes mellitus (DM) among people with or at elevated risk for knee OA. Materials and Methods: Participants from the Osteoarthritis Initiative, aged 45 to 79 years, where included. Participants with or at risk of knee OA from baseline to the 96-month visit were included. Participants with self-reported DM at baseline were excluded. DM incidence was followed over the 4-time points. Gait speed was measured at baseline using a 20-m walk test. Generalized estimating equations with logistic regression were utilized for analyses. Receiver operator characteristic curves and area under the curve were used to determine the cutoff score for baseline speed. Results: Of the 4313 participants included in the analyses (58.7% females), 301 participants had a cumulative incidence of DM of 7.0% during follow-up. Decreased gait speed was a significant predictor of incident DM (RR 0.44, p = 0.018). The threshold for baseline gait speed that predicted incident DM was 1.32 m/s with an area under the curve of 0.59 (p < 0.001). Conclusions: Baseline gait speed could be an important screening tool for identifying people at risk of incident diabetes, and the determined cutoff value for gait speed should be examined in future research.


Sign in / Sign up

Export Citation Format

Share Document