Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem

2020 ◽  
Vol 96 ◽  
pp. 106602
Author(s):  
Zhaoming Miao ◽  
Xianfeng Yuan ◽  
Fengyu Zhou ◽  
Xuanjie Qiu ◽  
Yong Song ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2735 ◽  
Author(s):  
Shipeng Wang ◽  
Xiaoping Yang ◽  
Xingqiao Wang ◽  
Zhihong Qian

The random placement of a large-scale sensor network in an outdoor environment often causes low coverage. In order to effectively improve the coverage of a wireless sensor network in the monitoring area, a coverage optimization algorithm for wireless sensor networks with a Virtual Force-Lévy-embedded Grey Wolf Optimization (VFLGWO) algorithm is proposed. The simulation results show that the VFLGWO algorithm has a better optimization effect on the coverage rate, uniformity, and average moving distance of sensor nodes than a wireless sensor network coverage optimization algorithm using Lévy-embedded Grey Wolf Optimizer, Cuckoo Search algorithm, and Chaotic Particle Swarm Optimization. The VFLGWO algorithm has good adaptability with respect to changes of the number of sensor nodes and the size of the monitoring area.


2016 ◽  
Vol 12 (08) ◽  
pp. 45 ◽  
Author(s):  
Li Zhu ◽  
Chunxiao Fan ◽  
Huarui Wu ◽  
Zhigang Wen

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; -ms-layout-grid-mode: line; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">To reduce the blind zone in network coverage, we propose a coverage optimization algorithm of wireless sensor network based on mobile nodes. This algorithm calculates the irregularity of blind zone in network coverage and obtains the minimum approximate numerical solution by utilizing the quantitative relationship between energy consumption of related nodes and the position of the mobile nodes. After determining the optimal relative position of the mobile nodes, the problem of blind zone between the static nodes is addressed. Simulation result shows that the proposed algorithm has high dynamic adaptability and can address the problem of blind zone maximally. Besides increasing the network coverage, the algorithm also reduces the network energy consumption, optimizes network coverage control and exhibits high convergence. </span>


2018 ◽  
Vol 14 (06) ◽  
pp. 58 ◽  
Author(s):  
Ren Song ◽  
Zhichao Xu ◽  
Yang Liu

<p class="0abstract"><span lang="EN-US">To solve the defect of traditional node deployment strategy, the improved <a name="_Hlk502130691"></a>fruit fly algorithm was combined with wireless sensor network. The optimization of network coverage was implemented. </span><span lang="EN-US">Based on a new type of intelligent algorithm, the change step of fruit fly optimization algorithm (CSFOA)</span><span lang="EN-US">was proposed. At the same time, the mathematical modeling of two network models was carried out respectively. The grid coverage model was used. The network coverage and redundancy were transformed into corresponding mathematical variables by means of grid partition.</span><span lang="EN-US">Among them, the maximum effective radius of sensor nodes was fixed in mobile node wireless sensor network. The location of nodes was randomly cast. The location of sensor nodes was placed in fixed position nodes. The effective radius of nodes can be changed dynamically.</span><span lang="EN-US">Finally, combined with the corresponding network model, the improved algorithm was applied to wireless sensor network.</span><span lang="EN-US">The combination of the optimal solution of the node position and the perceptual radius was found through the algorithm. The maximum network coverage was achieved.</span><span lang="EN-US">The two models were simulated and verified. The results showed that the improved algorithm was effective and superior to the coverage optimization of wireless sensor networks.</span></p>


2019 ◽  
Vol 13 ◽  
pp. 174830261988949 ◽  
Author(s):  
Zhendong Wang ◽  
Huamao Xie ◽  
Zhongdong Hu ◽  
Dahai Li ◽  
Junling Wang ◽  
...  

Aiming at the problem of wireless sensor network node coverage optimization with obstacles in the monitoring area, based on the grey wolf optimizer algorithm, this paper proposes an improved grey wolf optimizer (IGWO) algorithm to improve the shortcomings of slow convergence, low search precision, and easy to fall into local optimum. Firstly, the nonlinear convergence factor is designed to balance the relationship between global search and local search. The elite strategy is introduced to protect the excellent individuals from being destroyed as the iteration proceeds. The original weighting strategy is improved, so that the leading wolf can guide the remaining grey wolves to prey in a more reasonable way. The design of the grey wolf’s boundary position strategy and the introduction of dynamic variation strategy enrich the population diversity and enhance the ability of the algorithm to jump out of local optimum. Then, the benchmark function is used to test the convergence performance of genetic algorithm, particle swarm optimization, grey wolf optimizer, and IGWO algorithm, which proves that the convergence performance of IGWO algorithm is better than the other three algorithms. Finally, the IGWO algorithm is applied to the deployment of wireless sensor networks with obstacles (rectangular obstacle, trapezoidal obstacle and triangular obstacles). Simulation results show that compared with GWO algorithm, IGWO algorithm can effectively improve the coverage of wireless sensor network nodes and obtain higher coverage rate with fewer nodes, thereby reducing the cost of deploying the network.


2018 ◽  
Vol 15 (3) ◽  
pp. 569-583 ◽  
Author(s):  
Lei Wang ◽  
Weihua Wu ◽  
Junyan Qi ◽  
Zongpu Jia

For all of types of applications in wireless sensor networks (WSNs), coverage is a fundamental and hot topic research issue. To monitor the interest field and obtain the valid data, the paper proposes a wireless sensor network coverage optimization model based on improved whale algorithm. The mathematic model of node coverage in wireless sensor networks is developed to achieve full coverage for the interest area. For the model, the idea of reverse learning is introduced into the original whale swarm optimization algorithm to optimize the initial distribution of the population. This method enhances the node search capability and speeds up the global search. The experiment shows that this algorithm can effectively improve the coverage of nodes in wireless sensor networks and optimize the network performance.


Sign in / Sign up

Export Citation Format

Share Document