A tentative evaluation for population establishment of Bactrocera dorsalis (Diptera: Tephritidae) by its population modeling: Considering the temporal distribution of host plants in a selected area in Jeju, Korea

2018 ◽  
Vol 21 (2) ◽  
pp. 451-465 ◽  
Author(s):  
Su Bin Kim ◽  
Dong-Soon Kim
2021 ◽  
Author(s):  
KASSIM Bakar ◽  
Turgay ÜSTÜNER

Abstract This paper summarizes the different host plants and fruit flies present in two islands (Grande-Comore and Mohéli) of the Comoros Archipelago. Different exotic and wild fruit plants were sampled. Eighty plant species, potential hosts, belonging to thirty-four families were collected and incubated for the emergence of fruit flies from December 2019 to September 2020. Twenty-five plant hosts from ten families comprising cultivated and wild fruits have been identified. Fruit fly infestation rates per kilogram of fruit (T.Kg-1 ) varied from plant to plant. Exotic fruit plants, which accounted for more than half of infested plants, including Cucumis melo, Cucurbita pepo, Prunus persica, Coffea arabica and Capsicum frutescens had high infestation rates. For wild plants, the highest infestation rates have been observed in some families including Combretaceae, Cucurbitaceae, Solanaceae and Vitaceae. The highest infestation rate per kilogram of fruit was observed in a wild plant: Cyphostemma lageniflorum. Thirteen new host plants infested by Tephritidae are reported and/or listed for the first time in Comoros. In total, eight species of fruit flies identified. However, the species Bactrocera dorsalis Hendel, 1912 (47.5%) and Dacus bivittatus (Bigot, 1858) (37.6%) were the most representative of the Tephritidae that emerged.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190598 ◽  
Author(s):  
Michael D. Dressler ◽  
Josue Conde ◽  
Omar Tonsi Eldakar ◽  
Robert P. Smith

Propagule pressure is a leading determinant of population establishment. Yet, an experimental understanding of how propagule size and number (two principal parts of propagule pressure) determine establishment success remains incomplete. Theoretical studies suggest that the timing between introduction events, a component of propagule number, can influence establishment success. However, this dynamic has rarely been explored experimentally. Using Escherichia coli engineered with an Allee effect, we investigated how the timing of two introduction events influences establishment. For populations introduced below the Allee threshold, establishment occurred if the time between two introduction events was sufficiently short, with the length of time between events further reduced by reducing growth rate. Interestingly, we observed that as the density of bacteria introduced in one introduction event increased, the time between introduction events that allowed for establishment increased. Using a mathematical model, we provide support that the mechanism behind these trends is the ability of the first population to modify the environment, which can pave the way for establishment of the second population. Our results provide experimental evidence that the temporal distribution of introduction events regulates establishment, furthering our understanding of propagule pressure and may have implications in invasion biology and infectious disease.


2020 ◽  
Vol 8 (1) ◽  
pp. 931-937
Author(s):  
Ahamada Karihila Boinahadji ◽  
◽  
Emile Victor Coly ◽  
Cheikh Atab Diedhiou ◽  
Pape Mbacke Sembene ◽  
...  

Author(s):  
H. Rasolofoarivao ◽  
L. H. Raveloson Ravaomanarivo ◽  
H. Delatte

Abstract Agriculture is one of the major farming activities, representing 32% of the gross domestic product of Madagascar and 74.3% of the population is involved in this activity. Fruit flies of the Tephritidae family are considered as the most destructive pests for agriculture in the country, nevertheless, few data exist on host plants and distribution of those pests. In the present study, we address those questions by conducting a large survey between November 2016 and July 2018 across the six agroecological regions of Madagascar. Fruit and vegetable were sampled from 198 plant species (wild and cultivated) and represented 37,965 fruits from all regions of Madagascar. The infestation index ranged from 0.06 to 538.46 pupae/kg, the infestation percentage was up to 54.84% in some samples, 63 plant species were considered as host of Tephritidae. Twelve fruit fly species were identified, seven of which were previously described as endemic, five species could be considered as widespread (altitudinal gradients between 1 and 1634 m asl) and major pests in Madagascar: Ceratitis malgassa (23 plant species from 12 families), Neoceratitis cyanescens (16 plant species from one family), Bactrocera dorsalis (18 plant species from 12 families), Dacus demmerezi (ten plant species from one family), Dacus vertebratus (six species from one family). Those results are of importance for implementation of control measures.


Agrikultura ◽  
2017 ◽  
Vol 28 (3) ◽  
Author(s):  
Agus Susanto ◽  
Yadi Supriyadi ◽  
Tohidin Tohidin ◽  
Nenet Susniahti ◽  
Vickri Hafizh

ABSTRACTFluctuation population of fruit flies Batrocera spp. (Dipthera: Tephritidae) on chilli (Capsicum annuum) plantation areas in Bandung Regency, West JavaFruit flies (Bactrocera spp.) are destructive pest that cause damages to horticulture commodities such as fruits and vegetables. The purpose of this study was to investigate fluctuation population of fruit flies in relation to abiotic factors, such as temperature, rainfall, number of rainy days, and biotic factors, such as host phenology and natural enemies. The field experiment was conducted in Pulosari Village, Pangalengan, Bandung. This research used survey method by placing 20 fruit flies traps on host plants, in which 10 traps were being placed in the outside and the others were being placed in the inside within 10 meters distance per trap. Trapped flies were collected and their population was counted in every week. The results revealed that abiotitic factors (temperature, rainfall, number of rainy days) have non significant influence indicated by the regression analysis of each temperature (Y=-101.2+2298.7x; R2=0.253; P>0.05), rainfall (Y= 0.143+154.4x; R2 = 0.004; P> 0.05), and the number of rainy days (Y= 6.607+140.51x; R2 = 0.015; P>0.05). Meanwhile, fruit fly with the dominant population was Bactocera dorsalis which was included into sibling species of Bactrocera dorsalis Complex with number of population was 93% from specimen sample.Keywords: Fluctuation population, fruit flies, Batrocera dorsalis Complex, ChilliABSTRAKLalat buah (Bactrocera spp.) merupakan hama penting yang menyerang tanaman hortikultura baik buah-buahan ataupun sayuran buah. Penelitian ini bertujuan untuk mengetahui korelasi fluktuasi populasi lalat buah pada pertanaman cabai merah terhadap faktor abiotik berupa suhu, curah hujan, jumlah hari hujan dan faktor biotik berupa fenologi tanaman inang dan musuh alami. Percobaan ini dilaksanakan di Desa Pulosari, Kecamatan Pangalengan Kabupaten Bandung. Percobaan dilakukan menggunakan metode survei dengan memasang perangkap lalat buah pada lahan pertanaman cabai merah sebanyak 20 perangkap dengan 10 perangkap bagian luar dan 10 perangkap bagian dalam dengan jarak antar perangkap 10 meter. Hasil tangkapan dikumpulkan dan dihitung populasi lalat buah yang terperangkap setiap minggunya. Hasil penelitian menunjukan faktor abiotik (suhu, curah hujan, jumlah hari hujan) tidak memberikan pengaruh signifikan ditunjukan dengan analisis regresi masing-masing pada suhu ( Y= -101,2+ 2298,7x ; R2=0,253; P > 0,05), Curah hujan (Y= 0,143 + 154,4x ; R2= 0,004 ; P > 0,05), dan Jumlah hari hujan (Y= 6,607 + 140,51x ; R2=0,015 ; P > 0,05) Sedangkan lalat buah yang memiliki populasi paling dominan adalah Bactrocera dorsalis yang termasuk sibling dari spesies Bactrocera dorsalis Kompleks dengan jumlah populasi sebanyak 93% dari sampel spesimen.Kata kunci : Fluktuasi populasi, Lalat buah, Bactrocera dorsalis Kompleks, Cabai merah


Author(s):  
R.A.I. Drew ◽  
D.L. Hancock

AbstractFifty-two species are placed in the Bactrocera dorsalis complex in Asia, eight of which are considered of economic importance. Twelve species are revised and the following forty new species described: Bactrocera atrifemur, B. bimaculata, B. carambolae, B. cibodasae, B. collita, B. floresiae, B. fulvifemur, B. fuscitibia, B. gombokensis, B. indonesiae, B. infulata, B. irvingiae, B. kanchanaburi, B. kandiensis, B. kinabalu, B. lateritaenia, B. latilineola, B. lombokensis, B. makilingensis, B. malaysiensis, B. melastomatos, B. merapiensis, B. minuscula, B. neocognata, B. neopropinqua, B. osbeckiae, B. papayae, B. penecognata, B. philippinensis, B. pyrifoliae, B. quasipropinqua, B. raiensis, B. sembaliensis, B. sulawesiae, B. sumbawaensis, B. thailandica, B. unimacula, B. usitata, B. verbascifoliae and B. vishnu. A key to species within the complex is presented. Information is given on location of type specimens, host-plants, attractant records and geographic distribution. Lectotypes are designated for B. dorsalis (Hendel), B. mangiferae (Cotes) (a synonym of B. zonata (Saunders)) and B. pedestris (Bezzi).


2005 ◽  
Vol 21 (6) ◽  
pp. 677-688 ◽  
Author(s):  
Christian Kost ◽  
Evandro Gama de Oliveira ◽  
Tobias Aurelius Knoch ◽  
Rainer Wirth

The distribution and formation of foraging trails have largely been neglected as factors explaining harvesting patterns of leaf-cutting ants. We applied fractal analysis, circular, and conventional statistics to published and newly recorded trail maps of seven Atta colonies focusing on three aspects: permanence, spatio-temporal plasticity and colony life stage. In the long term, trail patterns of young and mature Atta colonies revealed that foraging activities were focused on distinct, static sectors that made up only parts of their potentially available foraging range. Within these foraging sectors, trails were typically ephemeral and highly variable in space and time. These ephemeral trails were concentrated around permanent trunk trails in mature and around nest entrances in young colonies. Besides these similarities, the comparison of trail systems between the two life stages indicated that young colonies exploited fewer leaf sources, used smaller and less-complex systems of foraging trails, preferred different life forms as host plants, and switched hosts more often compared with mature colonies. Based on these analyses, we propose a general hypothesis which describes the foraging pattern in Atta as a result of initial foraging experiences, spatio-temporal distribution of suitable host plants, energetic constraints, and other factors such as seasonality and interspecific predation.


2012 ◽  
Author(s):  
Steve M. J. Janssen ◽  
Anna Gralak ◽  
Yayoi Kawasaki ◽  
Gert Kristo ◽  
Pedro M. Rodrigues ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document