Analytical study on the synthetic jet control of asymmetric flow field of flying wing unmanned aerial vehicle

2016 ◽  
Vol 56 ◽  
pp. 90-99 ◽  
Author(s):  
Xiaoping Xu ◽  
Zhou Zhou
Author(s):  
Jiachen Zhu ◽  
Zhiwei Shi ◽  
Quanbing Sun ◽  
Jie Chen ◽  
Yizhang Dong ◽  
...  

Due to its layout, there are difficulties in realizing heading attitude control of a flying-wing unmanned aerial vehicle. In this paper, a reverse jet control scheme has been designed: (1) to replace the resistance rudders that are used for the yaw control of a conventional flying-wing unmanned aerial vehicle, (2) to assist and optimize heading attitude control, eliminate the adverse effects of the control surface and enhance stealth performance, and (3) to promote the use of rudderless flight for flying-wing unmanned aerial vehicles. To explore the control mechanism and the flow field of the reverse jet scheme, three-dimensional numerical simulations and low-speed wind tunnel experiments were carried out. First, the numerical simulations evaluated the feasibility and effectiveness of the reverse jet control scheme and explored and optimized the excitation parameters for the scheme. Then the forces were measured in a wind tunnel, and particle image velocimetry experiments were carried out. A reverse jet actuator was independently designed to verify the results of the numerical simulation. The results show that when the reverse jet excitation is applied, the jet obstructs the mainstream, destroys the flow field at the excitation position, and causes early separation of the flow, which increases the pressure drag on the wings and produces a control effect. The control effect mainly depends on the separation degree of the leeward surface. The larger the jet momentum coefficient is, the smaller the jet angle is, and the closer the excitation position is to the leading edge, the greater the separation degree of the leeward surface is, the better the heading attitude control effect is.


2019 ◽  
Vol 35 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Qiang Shi ◽  
Hanping Mao ◽  
Xianping Guan

Abstract. To analyze the droplet deposition under the influence of the flow field of an unmanned aerial vehicle (UAV), a hand-held three-dimensional (3D) laser scanner was used to scan 3D images of the UAV. Fluent software was used to simulate the motion characteristics of droplets and flow fields under the conditions of a flight speed of 3 m/s and an altitude of 1.5 m. The results indicated that the ground deposition concentration in the nonrotor flow field was high, the spray field width was 2.6 m, and the droplet deposition concentration was 50 to 200 ug/cm2. Under the influence of the rotor flow field, the widest deposition range of droplets reached 12.8 m. Notably, the droplet deposition uniformity worsened, and the concentration range of the droplet deposition was 0 to 500 ug/cm2. With the downward development of the downwash flow field, the overall velocity of the flow field gradually decreased, and the influence interval of the flow field gradually expanded. In this article, the droplet concentration was verified under simulated working conditions by a field experiment, thereby demonstrating the reliability of the numerical simulation results. This research could provide a basis for determining optimal UAV operating parameters, reducing the drift of droplets and increasing the utilization rate of pesticides. Keywords: Unmanned aerial vehicle (UAV), Aerial application, Downwash flow field, Droplet deposition, Simulation analysis.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 43
Author(s):  
Xianglei Liu ◽  
Tongxin Guo ◽  
Pengfei Zhang ◽  
Zhenkai Jia ◽  
Xiaohua Tong

To optically capture and analyze the structure and changes of the flow field of a weak airflow object with high accuracy, this study proposes novel weak flow field extraction methods based on background-oriented schlieren. First, a fine background pattern texture and a sensor network layout were designed to satisfy the requirement of weak flow field extraction. Second, the image displacement was extracted by calculating the correlation matrix in the frequency domain for a particle image velocimetry algorithm, and further calculations were performed for the density field using Poisson’s equation. Finally, the time series baseline stacking method was proposed to obtain the flow field changes of weak airflow structures. A combustion experiment was conducted to validate the feasibility and accuracy of the proposed method. The results of a quad-rotor unmanned aerial vehicle experiment showed that the clear, uneven, and continuous quantitative laminar flow field could be obtained directly, which overcame the interference of the weak airflow, large field of view, and asymmetrical steady flow.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

2019 ◽  
Vol E102.B (10) ◽  
pp. 2014-2020
Author(s):  
Yancheng CHEN ◽  
Ning LI ◽  
Xijian ZHONG ◽  
Yan GUO

Sign in / Sign up

Export Citation Format

Share Document