Transgenic overexpression of dimethylarginine dimethylaminohydrolase 1 protects from angiotensin II - induced cardiac hypertrophy and vascular remodeling

2021 ◽  
Vol 331 ◽  
pp. e96
Author(s):  
I. Kopaliani ◽  
N. Jarzebska ◽  
S. Brilloff ◽  
A. Kolouschek ◽  
J. Martens-Lobenhoffer ◽  
...  
Author(s):  
Irakli Kopaliani ◽  
Natalia Jarzebska ◽  
Silke Brilloff ◽  
Anne Kolouschek ◽  
Jens Martens-Lobenhoffer ◽  
...  

Background: Cardiovascular complications are the leading cause of death and elevated levels of asymmetric dimethyarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are implicated in their pathophysiology. We investigated the role of DDAH1 (dimethylarginine dimethylaminohydrolase 1), an enzyme hydrolyzing ADMA, in prevention of cardiovascular remodeling during hypertension. We hypothesized that the animals overexpressing DDAH1 will be protected from Ang II-induced end organ damage. Methods and Results: Angiotensin II (ANGII) was infused in two doses: 0.75 and 1.5 mg/kg/day in DDAH1 transgenic mice (TG) and wild type (WT) littermates for two or four weeks. Echocardiography was performed in the first and fourth week of the infusion, systolic blood pressure (SBP) was measured weekly and cardiac hypertrophy and vascular remodeling was assessed by histology. Increase in SBP after one week of ANGII infusion was not different between the groups, while TG mice had lower SBP at later time points. TG mice were protected from cardiovascular remodeling after 2 weeks of ANGII infusion in the high dose and after 4 weeks in the moderate dose. TG mice had higher left ventricular lumen-to-wall ratio, lower cardiomyocyte cross sectional area and less interstitial fibrosis as compared to WT controls. In aorta, TG mice had less adventitial fibrosis, lower medial thickness with preserved elastin content, lower counts of inflammatory cells, lower levels of active matrix metalloproteinase-2 and showed better endothelium-dependent relaxation. Conclusions: We demonstrated that overexpression of DDAH1 protects from ANGII-induced cardiovascular remodeling and progression of hypertension by preserving endothelial function and limiting inflammation.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Tatsuo Kawai ◽  
Steven J Forrester ◽  
Katherine J Elliot ◽  
Takashi Obama ◽  
Takehiko Takayanagi ◽  
...  

We have recently reported that caveolin-1 (Cav1) enriched membrane microdomains in vascular smooth muscle cells (VSMC) mediate a metalloprotease ADAM17-dependent EGF receptor (EGFR) transactivation, which is linked to vascular remodeling but not contraction induced by angiotensin II (AngII). We have tested our hypothesis that Cav1, a major structural protein of caveolae, plays a critical role for development of vascular remodeling but not hypertension induced by AngII. 8 week old male Cav1-/- and the control Cav+/+ wild-type mice (WT: C57BL6) were infused with AngII (1 μg/kg/min) for 2 weeks to induce vascular remodeling and hypertension. Upon AngII infusion, histological assessments demonstrated medial hypertrophy and perivascular fibrosis of coronary and renal arteries in WT mice compared with sham-operated control mice. The AngII-infused WT mice also showed a phenotype of cardiac hypertrophy with increased heart weight/body weight (HW/BW) ratio (mg/g: 8.0±0.6 vs 5.7±0.7 p<0.01) compared with WT control. In contrast to AngII-infused WT mice, Cav1-/- mice with AngII infusion showed attenuation of vascular remodeling but not cardiac hypertrophy; HW/BW ratio (8.6±0.5 vs 6.4±0.2 p<0.05). Similar levels of AngII-induced hypertension were observed in both WT and Cav1-/- mice assessed by telemetry (mean arterial pressure: 142±9 vs 154±20 mmHg). In WT mice, Ang II enhanced ADAM17 expression and phospho-Tyr1068 EGFR staining in vasculatures of heart and kidney. These events were attenuated in vessels from Cav1-/- mice infused with AngII. In addition, immuno-histochemical analyses revealed less ER stress in heart and kidney of AngII-infused Cav1-/- mice compared with WT mice. Enhanced Cav1 and VCAM-1 expression were also observed in aorta from AngII-infused WT mice but not in Cav1-/- aorta. In rat VSMCs, adenoviral encoding Cav1 siRNA (100 moi) attenuated AngII-induced enhancements of total cell protein, cell volume and extracellular collagen content but not mitochondrial ROS generation. These data suggest that Cav1 and presumably vascular caveolae play critical roles for vascular remodeling and inflammation which likely involves the ADAM17/EGFR cascade independent from blood pressure or mitochondrial ROS regulation.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Roman N Rodionov ◽  
Silke Brilloff ◽  
Natalia Jarzebska ◽  
Anne Kolouschek ◽  
Jens Martens-Lobenhoffer ◽  
...  

Background: ADMA (asymmetric dimethylarginine) is an endogenous inhibitor of nitric oxide synthase. ADMA can be metabolized to citrulline by dimethylarginine dimethylaminohydrolase (DDAH). DDAH1 overexpression lowers ADMA and protects from angiotensin II - induced renal interstitial fibrosis and vascular oxidative stress. The goal of the current study was to test the hypothesis that transgenic overexpression of DDAH1 protects from angiotensin II-induced cardiac hypertrophy. Methods and Results: DDAH1 transgenic mice grew and developed normally and had decreased plasma ADMA levels. Angiotensin II was infused for four weeks in the dose of 0.75 mg/kg/day in DDAH1 transgenic mice and wild type littermates via osmotic minipumps. Echocardiography was performed in the first and fourth week after start of the infusion on anaesthetized mice. After 4 weeks of angiotensin II infusion wild type mice developed cardiac hypertrophy. The DDAH1 transgenic mice had higher left ventricular lumen to wall ratio compared to the wild type mice (1.76 ± 0.18 vs 1.15 ± 0.22, P<0.01). They also had lower left ventricular posterior wall thickness in systole and diastole as compared to the wild type controls (1.18 ± 0.03 mm vs 1.95 ± 0.16 mm, P<0.001 and 0.81 ± 0.03 mm vs 1.62 ± 0.25 mm, P<0.001, respectively). Conclusion: We demonstrated that upregulation of DDAH1 protects from angiotensin II-induced cardiac hypertrophy. Our findings suggest that ADMA plays a role in angiotensin II - induced myocardial remodeling. Upregulation of DDAH1 might be a potential approach for protection from angiotensin II - induced end organ damage.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Wang ◽  
Hongjuan Liao ◽  
Yueheng Wang ◽  
Jinlin Zhou ◽  
Feng Wang ◽  
...  

Abstract Background Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. Methods Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. Results The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. Conclusions Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


Sign in / Sign up

Export Citation Format

Share Document