Activated T Cells, but Not Lung Tumor Cells, Express Fas Ligand

2014 ◽  
Vol 97 (1) ◽  
pp. 379-380 ◽  
Author(s):  
Heriberto Prado-Garcia ◽  
Susana Romero-Garcia ◽  
Jose Sullivan Lopez-Gonzalez
Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1952-1959 ◽  
Author(s):  
Ahmet Zeytun ◽  
Mona Hassuneh ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract In the current study, we investigated the repercussions of the interaction between tumor cells (LSA) and the tumor-specific cytotoxic T lymphocyte (CTL) (PE-9) when both expressed Fas and Fas ligand (FasL). The CTL clone, PE-9, expressed high levels of Fas and FasL upon activation through the T-cell receptor (TCR). Furthermore, the activated PE-9 cells used both perforin- and FasL-based pathways to kill Fas-positive (Fas+) LSA tumor cells. Interestingly, LSA tumor cells also constitutively expressed FasL but not perforin, and killed Fas+ PE-9 CTLs and Fas+ but not Fas-negative (Fas−) activated T cells and thymocytes, as detected using the JAM test. PE-9 CTLs, cultured for 24 hours in the presence of cell lysates of FasL-bearing LSA cells but not FasL-deficient P815 cells, exhibited significant apoptosis as detected using the TUNEL method. Moreover, another FasL+ T-cell lymphoma line, EL-4, induced apoptosis in Fas+ but not in Fas− T cells in a similar fashion. The current study demonstrates for the first time that not only can the tumor-specific CTL mediate Fas-based killing of tumor cells, but FasL+ tumor cells can kill the Fas+ tumor-specific CTL. Thus, the survival of the tumor or the host may depend on which cell can accomplish this task more efficiently. The current study also suggests that FasL-based killing of CTLs by specific tumor cells may constitute a major limiting factor in successful immunotherapy.


Antibodies ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 25
Author(s):  
Violet Y. Tu ◽  
Asma Ayari ◽  
Roddy S. O’Connor

T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.


1995 ◽  
Vol 181 (1) ◽  
pp. 71-77 ◽  
Author(s):  
M R Alderson ◽  
T W Tough ◽  
T Davis-Smith ◽  
S Braddy ◽  
B Falk ◽  
...  

A significant proportion of previously activated human T cells undergo apoptosis when triggered through the CD3/T cell receptor complex, a process termed activation-induced cell death (AICD). Ligation of Fas on activated T cells by either Fas antibodies or recombinant human Fas-ligand (Fas-L) also results in cytolysis. We demonstrate that these two pathways of apoptosis are causally related. Stimulation of previously activated T cells resulted in the expression of Fas-L mRNA and lysis of Fas-positive target cells. Fas-L antagonists inhibited AICD of T cell clones and staphylococcus enterotoxin B (SEB)-specific T cell lines. The data indicate AICD in previously stimulated T cells is mediated by Fas/Fas-L interactions.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2360-2368 ◽  
Author(s):  
Laurent Genestier ◽  
Sylvie Fournel ◽  
Monique Flacher ◽  
Olga Assossou ◽  
Jean-Pierre Revillard ◽  
...  

Polyclonal horse antilymphocyte and rabbit antithymocyte globulins (ATGs) are currently used in severe aplastic anemia and for the treatment of organ allograft acute rejection and graft-versus-host disease. ATG treatment induces a major depletion of peripheral blood lymphocytes, which contributes to its overall immunosuppressive effects. Several mechanisms that may account for lymphocyte lysis were investigated in vitro. At high concentrations (.1 to 1 mg/mL) ATGs activate the human classic complement pathway and induce lysis of both resting and phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells. At low, submitogenic, concentration ATGs induce antibody-dependent cell cytotoxicity of PHA-activated cells, but not resting cells. They also trigger surface Fas (Apo-1, CD95) expression in naive T cells and Fas-ligand gene and protein expression in both naive and primed T cells, resulting in Fas/Fas-L interaction-mediated cell death. ATG-induced apoptosis and Fas-L expression were not observed with an ATG preparation lacking CD2 and CD3 antibodies. Susceptibility to ATG-induced apoptosis was restricted to activated cells, dependent on IL-2, and prevented by Cyclosporin A, FK506, and rapamycin. The data suggest that low doses of ATGs could be clinically evaluated in treatments aiming at the selective deletion of in vivo activated T cells in order to avoid massive lymphocyte depletion and subsequent immunodeficiency.


1996 ◽  
Vol 183 (4) ◽  
pp. 1789-1796 ◽  
Author(s):  
G Süss ◽  
K Shortman

Dendritic cells (DC), the most efficient antigen-presenting cells, are well equipped for activation of naive CD4+ T cells by their expression of high levels of major histocompatibility complex and costimulator molecules. We now demonstrate that some DC are equally well equipped for killing these same T cells. Murine splenic DC consist of both conventional CD8alpha- DC and a major population of CD8alpha+ DC. Whereas CD8- DC induce a vigorous proliferative response in CD4 T cells, CD8+ DC induce a lesser response that is associated with marked T cell apoptosis. By using various mixtures of T cells and DC from Fas-mutant lpr/lpr mice and Fas-ligand (FasL) mutant gld/gld mice, we show this death is due to interaction of Fas on activated T cells with FasL on CD8+ DC. Furthermore, we show by direct surface staining that CD8+ DC, but not CD8- DC, express FasL at high levels. These findings indicate that FasL+ CD8+ DC are a specialized subgroup of DC with a role in the regulation of the response of primary peripheral T cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2204-2204
Author(s):  
Satu Kyttaelae ◽  
Ivonne Habermann ◽  
Martin Bornhaeuser ◽  
Gerhard Ehninger ◽  
Alexander Kiani

Abstract NFAT (Nuclear Factor of Activated T cells) is a family of calcium-induced, calcineurin-dependent transcription factors, well characterized as central regulators of inducible gene expression in T lymphocytes but now known to function also in several other cell types in various adaptation and differentiation processes. Activation of NFAT by the phosphatase calcineurin is counteracted by several inhibitory kinases and can be completely blocked by the immunosuppressant Cyclosporin A. The Down syndrome critical region 1 (DSCR1; also termed CSP1, MCIP1 or RCAN1) gene belongs to the calcipressin family of endogenous calcineurin inhibitors and is expressed in several isoforms, one of which (isoform C, coded by exons 4–7) has been described to be a transcriptional target for NFAT in striated muscle, endothelial, and neural cells. The DSCR1 gene is located within the Down syndrome critical region of human chromosome 21 and is, together with 200–300 other genes, overexpressed about 1.5-fold in patients with Down syndrome (DS). Previously, dysregulation of NFAT signaling by overexpression of DSCR1 has been implicated in causing various of the pathophysiological features observed in DS patients. Children with DS also suffer from an about 500-fold increased incidence of acute megakaryocytic leukemia; the respective roles of NFAT or DSCR1 in megakaryocytes of either normal individuals or those with DS, however, has not yet been established. Here we show that DSCR1 is upregulated during megakaryocytic differentiation in a lineage-specific manner, and in mature megakaryocytes is further strongly induced by calcineurin stimulation. DSCR1 expression in megakaryocytes is regulated by NFAT, since overexpression of NFATc2 enhances, while overexpression of the specific inhibitor of NFAT activation, VIVIT, suppresses expression of the gene. We further demonstrate that DSCR1 does not only represent an NFAT target in megakaryocytes, but itself acts an inhibitor of NFAT signaling in these cells. Overexpression of DSCR1 in CMK cells as well as in primary megakaryocytes by retroviral transduction profoundly suppressed ionomycin-induced dephosphorylation and nuclear translocation of NFATc2, as well as transactivation of an NFAT-dependent promoter construct. Finally, overexpression of DSCR1 in megakaryocytes markedly downregulated both the constitutive and induced expression of Fas Ligand, a pro-apoptotic gene recently established as a NFAT target in megakaryocytes. Together, these results suggest that DSCR1 acts as an NFAT-induced NFAT inhibitor in megakaryocytes and, when overexpressed, interferes with the expression of NFAT-dependent megakaryocytic genes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4088-4088
Author(s):  
Serena Kimi Perna ◽  
Biagio De Angelis ◽  
Daria Pagliara ◽  
Lan Zhan ◽  
Cliona M Rooney ◽  
...  

Abstract Abstract 4088 Poster Board III-1023 Although adoptive transfer of antigen-specific CTLs is generally safe and can be clinically effective for the treatment of several malignancies, the administration of stimulatory cytokines may be required to sustain their long-term growth and persistence in vivo. IL2, a γ-chain T-cell growth cytokine, has been used clinically, but is associated with significant toxicities. In addition, IL2 supports the expansion and function of Tregs, counterbalancing its stimulatory effects on CTLs and favoring the establishment of an immune-protected microenvironment for cancer. IL15, like IL2, is a γ-chain cytokine capable of sustaining the expansion and function of effector T cells. We have explored whether this cytokine also shares with IL2 an unwanted stimulatory effect on Tregs. Naturally occurring Tregs (CD4+CD25bright) were isolated from buffy coat preparations from healthy volunteers (mean of Treg recovery: 0.7% ± 0.05% of the starting population of mononuclear cells). The suppressive function of isolated Tregs was confirmed by their ability to inhibit the proliferation of activated T lymphocytes labeled with carboxyfluorescin diacetate succinimidyl ester (CFSE) using FACS analysis to measure CFSE dilution after 5-6 days of culture (activated T cell:Treg ratio 1:1). The proliferation of activated T cells in the presence of Tregs was significantly reduced (28%±5%) as compared to activated T cells cultured in the presence of control CD4+CD25– T cells (59%±5%) (p<0.05). Following addition of IL15 (2.5 ng/mL), however, proliferation of activated T cells continued even in the presence of Tregs (83%±5% plus IL15 without Tregs vs. 80%±5% plus IL15 and Tregs) (p=0.9), suggesting that this cytokine mitigates the immunosuppressive effects of Tregs. We then analyzed whether Tregs affected the anti-tumor activity of antigen-specific CTLs. We used our Epstein-Barr-Virus-(EBV)-specific CTLs as tumor model. EBV-CTLs were co-cultured with EBV-infected cells (LCLs) (CTL:LCL ratio 1:2). Residual tumor cells were enumerated by FACS analysis after 5-7 days of culture. In the absence of exogenous IL-15, EBV-CTLs failed to eliminate EBV-infected cells (residual LCLs: 37%±8%), while the addition of IL15 (2.5 ng/mL) increased the anti-tumor effect of CTLs, so that only 4%±1% tumor cells were detectable at the end of the culture. We then explored the effects of adding Treg to the cultures (Treg:CTL ratio 1:1). The percentage of tumor cells increased rather than decreased by day 5-7 when CTLs were cultured with Tregs in the absence of IL15 (residual tumor cells from 37%±8% in the absence of Tregs to 53%±9% in the presence of Tregs) (p<0.05). When IL15 was added, Treg were more limited in their ability to inhibit T effector cells, so that residual tumor cells were 4%±1% and 11%±3% % in the absence or in the presence of Tregs, respectively. To discover if IL15 has a direct effect on Tregs, we analyzed STAT5 phosphorylation after exposing Tregs to the cytokine. We found that this molecule was phosphorylated in 47%±18% of Tregs 15 minutes after exposure to IL15 (2.5 ng/mL). This effect was mediated by the specific interaction of the cytokine with its own receptor, as no phosphorylation occurred when Treg cells were pre-incubated with an IL-15Rα blocking antibody. This action on Tregs notwithstanding, IL15 stimulation did not modulate Treg inhibitory function, since these cells, even after exposure to IL15 (2.5 ng/mL) for 3-5 days, continued to significantly inhibit the proliferation of T lymphocytes activated in the absence of IL-15 (74%±17% inhibition). Hence, IL15 enhance the proliferative and anti-tumor effects of antigen-specific CTLs, and these effects are not impaired by the presence of Tregs. Administration of IL15 may therefore benefit patients receiving adoptive T cell therapies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3024-3024
Author(s):  
Alice Pievani ◽  
Gianmaria Borleri ◽  
Camilla Belussi ◽  
Alessandro Rambaldi ◽  
Josee Golay ◽  
...  

Abstract Abstract 3024 Poster Board II-1000 Cytokine induced killer (CIK) cells cultures can easily be obtained by stimulating PBMCs with monoclonal antibody anti-CD3 OKT3, IFNgamma and IL2. After 3-4 weeks at least 3 separate populations are present in the culture: CD3+/CD56-/CD8+ precursors (40.5 ± 19.9%), CD3-CD56+ NK cells (2.5 ± 1.5%) and CD3+/CD56+/CD8+ CIK cells (56.9 ± 21%) which show a T EMRA phenotype (Franceschetti et al., Exp Hematol. 37, 616-628, 2009). CIK cultures are currently used in allogeneic or autologous settings as potential anti-neoplastic effectors for adoptive transfer clinical approaches. We have further characterised the mechanism of target cell recognition and role of activating receptors and of lytic mediators in the cytotoxicity of purified CD3+/CD56+/CD8+ CIK cells. We have observed that CIK cells can kill targets through at least two distinct mechanisms: the first TCR-dependent and antigen-specific and the second non TCR-dependent. Indeed, upon TCR/CD3 crosslinking in CIK cells we observe ERK-1/2 phosphorylation, IFNgamma production (mean 32.6% of positive cells by intracellular staining) and TNFalpha production (mean 19.6%). CD3 ligation by OKT3 results in a significant increase over time in the percentage of CIK cells undergoing degranulation evaluated as CD107a positive cells (respectively 15.5 ± 2.2% at 60', 24.4 ± 1% at 120', 32,9 ± 8.7% at 180' and 34.2 ± 11.1% at 240'). CD3 ligation on CIK cells can induce cytotoxicity in a reverse Ab-dependent killing assay. Addition of OKT3 enhances also the cytotoxicity of CIK cells against K562 leukaemic target (from 16 ± 5% to 50 ± 4 %, E:T 10:1; p<0.001). The TCR/CD3 mediated activation is blocked by pre-treatment with cyclosporine A, confirming the role of calcium-regulated phosphatase calcineurin in the CD3-linked degranulation pathway. Interestingly, CIK cells retain functional activity as antigen-specific memory T cells. Indeed in case of CIK cultures obtained from CMV-seropositive donors, CMV-specific CD3+/CD56+ CIK cells can be generated. CMV-specific CIK cells immunopurified by HLA-peptide tetramers are able to specifically recognise and kill autologous but not allogeneic PHA-blasts pulsed with pp65495-503 but not with irrelevant peptide (average lysis 63 ± 8%, E:T 10:1) and to produce IFNgamma following antigenic stimulation (26.4 ± 7%). Similar data are obtained with EBV-specific T cells. Moreover, CIK cells also show non-MHC-restricted cytotoxicity against numerous leukemic target cell lines. The same CMV-specific purified CIK population shows to posses non MHC-restricted cytotoxic properties against several leukemic targets (average lysis 44 ± 8%, E:T 10:1). NKG2D, described as receptor that can trigger TCR-independent cytotoxicity in activated T cells, is expressed on all CIK cells (mean 99%, MFI 251). Although we can show that NKG2D is functional in these cells since cross-linking with anti-NKG2D mAb leads to ERK phophorylation, blocking of this receptor with mAb does not affect the cytolysis of leukaemic targets. NKG2D crosslinking in CIK cells is not sufficient to induce granule esocytosis and INFgamma or TNFalpha production. No correlation is found between expression and surface density of NKG2D ligands on leukaemic cell targets and their susceptibility to CIK-mediated lysis. Unrestricted CIK-mediated cytotoxicity occurs in the absence of measurable degranulation, is not affected by cyclosporin A, but is inhibited by 70% in presence of brefeldin A, a surface upregulation of glycopolypeptide molecules inhibitor, suggesting a role for Fas-ligand family molecules. CIK cells indeed express TNFalpha (mean 16%, MFI 56), FasL (mean 34%, MFI 34) and TRAIL (mean 37%, MFI 49). The role of this death ligands in leukaemic cell killing is currently under investigation. These data clearly show that CD3+/CD56+/CD8+ CIK cells are activated T EMRA cells which have retained their TCR/CD3 complex usage and their antigen specificity but have acquired unrestricted anti-leukaemic activity. The identification of the molecules involved in this killing is still under investigation. These data open up the possibility of multiple clinical use of CIK cultures, including anti-leukaemic and anti-infective usage particularly in immunodeficient patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 617-625 ◽  
Author(s):  
Sven Baumann ◽  
Anja Dostert ◽  
Natalia Novac ◽  
Anton Bauer ◽  
Wolfgang Schmid ◽  
...  

Abstract Glucocorticoids (GCs) play an important role in the regulation of peripheral T-cell survival. Their molecular mechanism of action and the question of whether they have the ability to inhibit apoptosis in vivo, however, are not fully elucidated. Signal transduction through the glucocorticoid receptor (GR) is complex and involves different pathways. Therefore, we used mice with T-cell-specific inactivation of the GR as well as mice with a function-selective mutation in the GR to determine the signaling mechanism. Evidence is presented for a functional role of direct binding of the GR to 2 negative glucocorticoid regulatory elements (nGREs) in the CD95 (APO-1/Fas) ligand (L) promoter. Binding of GRs to these nGREs reduces activation-induced CD95L expression in T cells. These in vitro results are fully supported by data obtained in vivo. Administration of GCs to mice leads to inhibition of activation-induced cell death (AICD). Thus, GC-mediated inhibition of CD95L expression of activated T cells might contribute to the anti-inflammatory function of steroid drugs. (Blood. 2005;106:617-625)


Sign in / Sign up

Export Citation Format

Share Document