haze event
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 33)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 11 (2) ◽  
pp. 76-87
Author(s):  
Farah Akmal Idrus ◽  
Khairul Nizam Mohamed ◽  
Nur Syazwani Abdul Rahim ◽  
Melissa Dennis Chong

South China Sea (SCS) is an oligotrophic sea which usually receives low nutrients supply. However, massive atmospheric dust input was occurred during the haze event in Southeast Asia for almost every year. The input of dissolved iron (DFe) and dissolved aluminium (DAl) from dust and nearby land into SCS off Sarawak Borneo region during the worst haze event in 2015 of the Southeast Asia were investigated. The estimation dust deposition during this study was 0.162 mg/m2/yr. The atmospheric fluxes of total Fe and total Al at the offshore Sarawak waters were 0.611 µmol/m2/yr and 2.03 µmol/m2/yr, respectively, where the readily available dissolved Fe and Al from the dust were 0.11 µmol/m2/yr (DFe) and 0.31 µmol/m2/yr (DAl). Fe has higher solubility (17.78%) than Al (15.21%). The lateral fluxes (e.g. from the nearby land) were 37.08 nmol/m2/yr (DFe) and 125 nmol/m2/yr (DAl), with strong Fe organic ligand class L1 (log K:22.43 – 24.33). High concentrations of DFe and DAl at the surface water of the offshore region, coincided with high concentration of macronutrients due to the prevailing south-westerly winds originated from the west Kalimantan. Low residence times, ~0.92 (DFe) and ~1.31 (DAl) years, corresponded well with DAlexcess in surface seawater due to biological utilization of DFe. Future works emphasize on natural organic Fe(III) ligands and phytoplankton study are needed for better understanding on biogeochemistry of Fe and Al at SCS off Malaysia Borneo.


2021 ◽  
Vol 15 ◽  
pp. 1-9
Author(s):  
Soon-Ung Park ◽  
Jeong Hoon Cho

A prolonged heavy haze event that has caused for the Environmental Protection Bureau (EPB) in Beijing to take emergency measures for the protection of the public health and the reduction of air pollution damages in China has been analyzed with the use of the Aerosol modeling System (AMS) to identify causes of this event. It is found that the heavy haze event is associated with high aerosols and water droplets concentrations. These high aerosol concentrations are mainly composed of anthropogenic aerosols, especially secondary inorganic aerosols formed by gas-to-particle conversion of gaseous pollutants in the eastern part of China whereas those in the northeastern parts of China are composed of the mixture of the anthropogenic aerosols and the Asian dust aerosol originated from the dust source regions of northern China and Mongolia. These high aerosol concentrations are found to be subsequently transported to the downwind regions of the Korean Peninsula and Japan causing a prolonged haze event there. It is also found that the Asian dust aerosol originated from northern China and Mongolia and the anthropogenic aerosols produced by chemical reactions of pollutants in the high emissions region of eastern China can cause significantly adverse environmental impacts in the whole Asian region by increased atmospheric aerosol loadings that may cause respiration diseases and visibility reduction and by excess deposition of aerosols causing adverse impacts on terrestrial and marine eco-systems.


2021 ◽  
Vol 21 (3) ◽  
pp. 2229-2249
Author(s):  
Jiarui Wu ◽  
Naifang Bei ◽  
Yuan Wang ◽  
Xia Li ◽  
Suixin Liu ◽  
...  

Abstract. Accurate identification and quantitative source apportionment of fine particulate matter (PM2.5) provide an important prerequisite for design and implementation of emission control strategies to reduce PM pollution. Therefore, a source-oriented version of the WRF-Chem model is developed in the study to conduct source apportionment of PM2.5 in the North China Plain (NCP). A persistent and heavy haze event that occurred in the NCP from 5 December 2015 to 4 January 2016 is simulated using the model as a case study to quantify PM2.5 contributions of local emissions and regional transport. Results show that local and nonlocal emissions contribute 36.3 % and 63.7 % of the PM2.5 mass in Beijing during the haze event on average. When Beijing's air quality is excellent or good in terms of hourly PM2.5 concentrations, local emissions dominate the PM2.5 mass, with contributions exceeding 50 %. However, when the air quality is severely polluted, the PM2.5 contribution of nonlocal emissions is around 75 %. Nonlocal emissions also dominate Tianjin's air quality, with average PM2.5 contributions exceeding 65 %. The PM2.5 level in Hebei and Shandong is generally controlled by local emissions, but in Henan, local and nonlocal emissions play an almost equivalent role in the PM2.5 level, except when the air quality is severely polluted, with nonlocal PM2.5 contributions of over 60 %. Additionally, the primary aerosol species are generally dominated by local emissions, with the average contribution exceeding 50 %. However, the source apportionment of secondary aerosols shows more evident regional characteristics. Therefore, except for cooperation with neighboring provinces to carry out strict emission mitigation measures, reducing primary aerosols is a priority to alleviate PM pollution in the NCP, especially in Beijing and Tianjin.


2021 ◽  
Vol 755 ◽  
pp. 142712
Author(s):  
Donglin Chen ◽  
Hong Liao ◽  
Yang Yang ◽  
Lei Chen ◽  
Hailong Wang

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
S. M. N. K. Thilakarathne ◽  
A. Ekanayake ◽  
P. S. Madamarandawala ◽  
W. B. C. P. Weerarathne ◽  
C. A. Thotawatthage ◽  
...  

AbstractTransboundary haze events received a noticeable attention recently, due to their frequent occurrences. They are mainly, consequences of anthropogenic activities. Sri Lanka experienced a haze event parallel to India in November 2019, the first air pollution event in Sri Lanka linked to a haze event in India. Due to the limited availability of information on haze-related microorganisms, we conducted this study in Kandy, Sri Lanka, aiming to explore the airborne bacterial consortia during a haze event. The natural sedimentation method was used for air sampling. Bacterial identification and the total bacterial load were determined using Sanger sequencing and qPCR. Notably, the total bacterial load was elevated by ~ 40% with the haze and decreased with decreasing haze intensity. The highest bacterial load was reported during the day time of the most intense hazy day (1.89 × 106 cells/µl) compared to non-hazy days (lowest; 1.12 × 105 cells/µl). Twelve bacterial species were identified and the most abundant phylum was Proteobacteria. The most common species observed during haze was Acinetobacter modestus. The percentage of culturable bacterial species was also high during the haze event (75% during day time of the most intense hazy day compared to 25% on the control). Two human pathogenic bacteria Burkholderia multivorans and Chryseobacterium gleum were found only during the haze event. Therefore, haze events could be hazardous to humans by means of the presence and fluctuating amounts of pathogenic bacteria. Thus, these findings are important in developing policies and guidelines to monitor and minimize the negative impact of haze events.


Author(s):  
Nishit Aman ◽  
Kasemsan Manomaiphiboon ◽  
Natchanok Pala-En ◽  
Eakkachai Kokkaew ◽  
Tassana Boonyoo ◽  
...  

This present work investigates several local and synoptic meteorological aspects associated with two wintertime haze episodes in Greater Bangkok using observational data, covering synoptic patterns evolution, day-to-day and diurnal variation, dynamic stability, temperature inversion, and back-trajectories. The episodes include an elevated haze event of 16 days (14–29 January 2015) for the first episode and 8 days (19–26 December 2017) for the second episode, together with some days before and after the haze event. Daily PM2.5 was found to be 50 µg m−3 or higher over most of the days during both haze events. These haze events commonly have cold surges as the background synoptic feature to initiate or trigger haze evolution. A cold surge reached the study area before the start of each haze event, causing temperature and relative humidity to drop abruptly initially but then gradually increased as the cold surge weakened or dissipated. Wind speed was relatively high when the cold surge was active. Global radiation was generally modulated by cloud cover, which turns relatively high during each haze event because cold surge induces less cloud. Daytime dynamic stability was generally unstable along the course of each haze event, except being stable at the ending of the second haze event due to a tropical depression. In each haze event, low-level temperature inversion existed, with multiple layers seen in the beginning, effectively suppressing atmospheric dilution. Large-scale subsidence inversion aloft was also persistently present. In both episodes, PM2.5 showed stronger diurnality during the time of elevated haze, as compared to the pre- and post-haze periods. During the first episode, an apparent contrast of PM2.5 diurnality was seen between the first and second parts of the haze event with relatively low afternoon PM2.5 over its first part, but relatively high afternoon PM2.5 over its second part, possibly due to the role of secondary aerosols. PM2.5/PM10 ratio was relatively lower in the first episode because of more impact of biomass burning, which was in general agreement with back-trajectories and active fire hotspots. The second haze event, with little biomass burning in the region, was likely to be caused mainly by local anthropogenic emissions. These findings suggest a need for haze-related policymaking with an integrated approach that accounts for all important emission sectors for both particulate and gaseous precursors of secondary aerosols. Given that cold surges induce an abrupt change in local meteorology, the time window to apply control measures for haze is limited, emphasizing the need for readiness in mitigation responses and early public warning.


Sign in / Sign up

Export Citation Format

Share Document