Association of ground-level ozone, meteorological factors and weather types with daily myocardial infarction frequencies in Augsburg, Southern Germany

2019 ◽  
Vol 217 ◽  
pp. 116975 ◽  
Author(s):  
Elke Hertig ◽  
Alexandra Schneider ◽  
Annette Peters ◽  
Wolfgang von Scheidt ◽  
Bernhard Kuch ◽  
...  
2021 ◽  
Author(s):  
Junlei Zhan ◽  
Yongchun Liu ◽  
Wei Ma ◽  
Xin Zhang ◽  
Xuezhong Wang ◽  
...  

Abstract. The formation of ground-level ozone (O3) is dependent on both atmospheric chemical processes and meteorological factors. Traditional models have difficulty assessing O3 formation sensitivity in a timely manner due to the limitations of flexibility and computational efficiency. In this study, a random forest (RF) model coupled with the reactivity of volatile organic compound (VOC) species was used to investigate the O3 formation sensitivity in Beijing from 2014 to 2016, and evaluate the relative importance (RI) of chemical and meteorological factors to O3 formation. The results showed that the O3 prediction performance using initial concentrations of VOC species (R2 = 0.87) was better than that using total VOCs (TVOCs) concentrations (R2 = 0.77). Meanwhile, the RIs of VOC species correlated well with their O3 formation potentials (OFPs). O3 formation presented a negative response to NOx, PM2.5 and relative humidity, and a positive response to temperature, solar radiation and VOCs. The O3 isopleth curves calculated by the RF model were generally comparable with those calculated by the box model. O3 formation shifted from a VOC-limited regime to a transition regime from 2014 to 2016. This study demonstrates that the RF model coupled with the initial concentrations of VOC species could provide an accurate, flexible, and computationally efficient approach for O3 sensitivity analysis.


2021 ◽  
Author(s):  
Elke Hertig ◽  
Ana Russo ◽  
Ricardo Trigo

<p>Temperature extremes and air pollution pose a significant threat to human health. A specific concern applies to heat events and elevated ground-level ozone concentrations, due to the physical relationships between these variables, the single and combined effects of both variables on human health and the anticipated substantial changes in the scope of climate change.</p><p>The present contribution addresses relationships between air temperature and ground-level ozone, the association of these variables with atmospheric circulation patterns, the anticipated changes under future climate change as well as their association with human morbidity (i.e. myocardial infarction frequencies, Hertig et al. 2019) and mortality. The focus is on two climatically different regions in Europe, i.e., Bavaria (Central Europe) and Portugal (South Europe).</p><p>In general, a strong relationship between air temperature and ozone formation became evident. Due to the non-linear nature of the relationship, higher temperatures usually led to substantially enhanced ozone concentrations. In the scope of climate change, considerable increases of maximum temperatures were assessed for Bavaria until the end of the century. Also, future ozone concentrations were projected to rise (Hertig 2020). With respect to spell-length related extremes (heat waves and/ or ozone pollution waves), heat waves were identified as the most frequent wave type for the two European regions under investigation. Waves were associated with in-situ built-up as well as with advection of air masses. Despite different climate settings, a comparable exposure to heat and ozone waves was found in Central and South Europe. In view of excess mortality, the most severe impacts were always associated with compound heat-ozone waves (Hertig et al. 2020).</p><p>Research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project number 408057478.</p><p>Hertig, E., Russo, A., Trigo, R. (2020): Heat and ozone pollution waves in Central and South Europe- characteristics, weather types, and association with mortality. Atmosphere. doi: 10.3390/atmos11121271</p><p>Hertig, E. (2020): Health-relevant ground-level ozone and temperature events under future climate change using the example of Bavaria, Southern Germany. Air Quality, Atmosphere and Health. DOI: https://doi.org/10.1007/s11869-020-00811-z</p><p>Hertig, E., Schneider, A., Peters, A., von Scheidt, W., Kuch, B., Meisinger, Ch. (2019): Association of ground-level ozone, meteorological factors and weather types with daily myocardial infarction frequencies in Augsburg, Southern Germany. Atmos. Environment. DOI: 10.1016/j.atmosenv.2019.116975</p>


2009 ◽  
Vol 157 (7) ◽  
pp. 2091-2107 ◽  
Author(s):  
Manuela Baumgarten ◽  
Christian Huber ◽  
Patrick Büker ◽  
Lisa Emberson ◽  
Hans-Peter Dietrich ◽  
...  

2011 ◽  
Vol 17 (1) ◽  
pp. 52-59
Author(s):  
A.V. Shavrina ◽  
◽  
I.A. Mikulskaya ◽  
S.I. Kiforenko ◽  
V.A. Sheminova ◽  
...  

2017 ◽  
Vol 68 (4) ◽  
pp. 824-829
Author(s):  
Cornel Ianache ◽  
Laurentiu Predescu ◽  
Mirela Predescu ◽  
Dumitru Dumitru

The serious air pollution problem has determined public concerns, worldwide. One of the main challenges for countries all over the world is caused by the elevated levels of ground-level ozone (O3) concentrations and its anthropogenic precursors. Ploiesti city, as one of the major urban area of Romania, is facing the same situation. This research aims to investigate spatial and temporal distribution characteristics of O3 in relationship with nitrogen oxides (NOx) using statistical analysis methods. Hourly O3 and NOx measurements were collected during 2014 year in Ploiesti. The results obtained showed that the ozone spatial distribution was non-normal for each month in 2014. The diurnal cycle of ground-level ozone concentrations showed a mid-day peak, while NOx diurnal variations presented 2 daily peaks, one in the morning (7:00 a.m.) and one in the afternoon (between 5:00 and 7:00 p.m.). In addition, it was observed a distinct pattern of weekly variations for O3 and NOx. Like in many other urban areas, the results indicated the presence of the �ozone weekend effect� in Ploiesti during the 2014 year, ozone concentrations being slightly higher on weekends compared to weekdays. For the same monitoring site, the nitrogen oxides were less prevalent on Saturdays and Sundays, probably due to reducing of road traffic and other pollution-generating activities on weekends than during the week.


Sign in / Sign up

Export Citation Format

Share Document